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Abstract

Our lives are effected daily by the features and properties of complex net-
works that surrounds us everywhere. Internet, the World Wide Web, friend-
ship networks and protein networks in our cells are some of them. Research
in the field has shown that many of these real world networks have a very
broad degree distribution, close to power-laws. This means that participants
with a small number of connections dominate the networks while there are
just a few with a very large number of connections. These highly connected
agents influences a big part of the network, which makes them interesting
and probably very important for the network function. In part I, a self-
organizing model of merging and regeneration is presented to create directed
networks with power-law degree distributions similar to several real world
networks. The model could for example describe the dynamics of companies
buying up each other at the same time as new ones are started. In part II
the structure of real world networks are investigated in the sense of degree
sequences when stepping out in the network, a multi-step degree correlation
measurement is presented. This measurement is also normalized with the one
step degree correlation profile. The positioning of highly connected nodes
relative to each other is one of the structural properties that are analyzed
and most of the networks are shown to demonstrate hub separation.
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Chapter 1

Introduction

Have you ever been amazed over how fast everyone you know knows about the
extremely embarrassing thing you did just the day before? Or how, almost
evertime you’re on a vacation abroad and you meet a fellow countrymen
you seem to have a mutual friend? The answers lie in the field of complex
networks which, like the friendship networks mentioned above effects our
lives daily. Internet, the world wide Web and protein networks in our cells
are other examples. Studying complex networks originates from graph theory
which was born as early as in the 18th century to study problems like, how
to take trips which visits certain sites exactly once [5]. The field took a
big leap when fast computers with a high computational capacity became
available since the computers gave the scientists the opportunity to preform
fast simulations on large systems. During the recent years the field has been
dominated by measuring real world networks, trying to find connections
between the structure and the function of a network and to understand the
process of evolving networks. It was found that many of the networks from
completely different parts of our world, like those mentioned above, have a
common feature. They consists of a very large number of nodes with a low
number of connections and a few number of nodes with a very high number
of connections. The distribution of connections among the nodes follows
close to a power-law [4]. This makes everything even more interesting. For
instance, the World Wide Webb is constructed by millions of people creating
sites every day which they link to other sites of their particular interest.
Counsidering the vast divergence in human interests, why isn’t this network
completely random [3]? How the structure is connected to the function is also
a very interesting question. Even though a lot of these networks have similar
distributions of connections they are constructed to do different things and
thus should have different structures! Or?

This thesis is about both the process of evolving directed networks through
a merging and regeneration model and mapping the structure of six real
world networks using a multi-step degree correlation measurement.






Chapter 2

Complex networks

2.1 What is a complex network?

The statement that something is a complex network but something else isn’t
has to be supported by some concepts and definitions. Below follows some
clues.

2.1.1 What is a network?

A network (sometimes also called a graph) typically describes a system where
the basic parts (agents) are interconnected, often via some sort of information
flow. One can think of cars on a road, gossip between friends, electricity
between powerstations or money between companies. A network can have
any size, i.e number of interconnected agents, or shape.

2.1.2 What does complex mean?

It is often difficult to separate the meaning of the words complicated and
compler. What does the latter word mean in present context? There are
probably almost as many definitions of a complex system as there are scien-
tists working in the field, but here are two examples: A complex system is
one that by design or function or both is difficult to understand and verify
[18] and A complex system is one in which there are multiple interactions
between many different components [15]. Another common explanation is
that for a complex system, the whole is greater than the sum of its parts.
This can be understood better by looking at a soccer team. It’s impossi-
ble to say for sure which team are going to win a match just by looking at
the individual players. The way they play together is a crucial factor. The
word complicated in this context has a somewhat different connotation, an
example of a complicated system could instead be a machine with a large
number of parts. If one sum up the contribution of each part one would
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get the action the machine was built to perform. A common example of a
complicated system like this is an airplane.

2.2 Terminology

Nodes

The participants of a network (people, powerstations, companies etc.) are
called nodes. They build up the network by different kinds of communication
via links between them. The size of a network is the total number of nodes
in it, N.

Links

The connections between different nodes are

called links. These can be directed or undi- a) —>
rected (fig. 2.1) depending on the system in
question. For example a friendship network
is often undirected (if A is a friend of B, B . .
is most likely a friend of A) while the World = F8ure 2-1: a) directed- b) undi-
Wide Web is a directed network since the

links between pages goes one way (if A is linked to B, B doesn’t have to be
linked to A).

b) ’/ﬁ,

Degree

The number of links that are connected to a node will here be called the
degree (k) of that node (sometimes also called the connectivity of a node).
So k; is the degree of node i. In the case of a directed network a node has
both an in- and an out-degree, denoted k;;, and k; o, respectively. That
is, the number of links that goes from a certain node and the number of
links that goes to that node. The total number of links in an undirected
system is kot = %va k; and the average degree is kg, = 2kiot/IN, where
the two comes, in both cases, from the fact that each link has two ends. In
the directed system the total number of links is ko = va ki in = va Ei out
and the average degree is kqy = Kav,out = Kav,in = ktot/IN. Nodes that have
a degree much larger than the average degree are called hubs.

Degree distribution

One well defined characteristic of a network is its degree distribution which is
the distribution of nodes with a certain degree. If one then normalize it with
the total number of nodes in the system one get a probability distribution
function, P(k). That is, the probability that an arbitrary node has the degree
k. Consequently for a directed network one has both an in- and an out-degree
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distribution describing the system. Another common way of presenting the
degree distribution is as a cumulative degree distribution, P(> k). This
distribution is giving the probability that an arbitrary node has a degree
larger than k. The cumulative degree distribution is defined as

P(> k) = /k ~ P dk. (2.1)

Shortest path

A path in a network is a sequence of nodes that

one has to go through to get from one node to i
another one, moving along the links between
them. Since the number of paths between two
nodes (and the maximum path length) diverges
with increasing system size, one often use the
shortest path. The shortest path is the path
that has the smallest sequence of nodes between
a pair. It can also be measured in steps (or
length) as the smallest number of steps between
two nodes, which is equal to the number of links
one has to pass.

Figure 2.2: Shortest path of
length 3 between node ¢ and j.

Diameter of a network

The diameter of a network is a measurement of the size of a network in terms
of distances, it is often defined as the longest shortest path or the average
shortest path between two nodes in the network. Both definitions have their
strengths and weaknesses but gives a hint about what kind of distances the
network is dealing with. Is it really dense (small diameter) or is it smeared
out (large diameter). In this thesis the diameter will be used only in general
terms and comparisons between networks where both definitions can be ap-
plied.

For further reading, see reference [6].

2.3 Different types of networks

2.3.1 Structure

The structure of a network depends on how the links are distributed in the
system. An increase in the total number of links often reduces the structural
properties of the system. In the limit of ki, = N(N — 1) all nodes will
be linked to all other nodes and the system isn’t really a complex system
any more. Another structureless but complex system is the classical random
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b)

Figure 2.3: a) Network without visible structure. b) Network with a string-like structure.
c¢) Network with a tree-like structure.

graph (also called the Erdés-Rényi model). This network is constructed by
having a fixed number of nodes and then adding links one by one completely
at random. This gives a homogeneous distribution of links in the system. If
one instead grow a network, where at each step a node is added and a link (or
several links) is put in between two random nodes, one get a random network
where the links are not distributed homogeneously in the system. The oldest
nodes will get more links since they have had more chances of getting links.
Both these random networks has a structure similar to figure 2.3 a. These
models are elaborated more on page 8 in reference [6]. Networks that are
found in the real world can have a more or less non-random structure. Two
examples of different structures are shown in figure 2.3 b, and c.

2.3.2 Degree distributions

\
3 b) N c)
~_ N
-~ S~ \\
7N ~ N
/ \ \\ N
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Figure 2.4: a) Poisson distribution with a characteristic scale of the average degree. b)
Exponential distribution with a characteristic scale of the average degree. c) Power-law
distribution without a characteristic scale.

Poisson distribution

The classical random graph has, in the limit of infinite size, a Poisson degree
distribution,
—E%k
Plk) =< = (2.2)

where k is the average degree of the system. The characteristic scale of
distribution is the average degree.
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Exponential distribution

The growing random graph has a exponential degree distribution,
P(k) oc e k/* (2.3)

where k is the average degree of the system. This distribution also has the
average degree as the characteristic scale.

Power-law distribution

The power-law distribution looks like
P(k) < k77, (2.4)

where v is the exponent of the distribution. Plotted in a log-log scale the
slope of the curve is equal to the exponent (fig. 2.4 ¢). This distribution
doesn’t have a characteristic scale and is therefore often called scale-free. All
real networks has of course a finite size, which gives a size dependent cut-off
where the distribution ends. A cumulative plot of a power-law distribution
gives

P(> k) o< k7L (2.5)

since it’s an integration of P(k) over k (see section 2.2 degree distribution).
To get more insights in the subject see page 12 of reference [6].

2.3.3 Real world networks

Real networks can be found almost everywhere and in all contexts. In this
thesis a couple of real world networks spanning from human transport net-
works, to modern information networks to biological networks will be exam-
ined. Table 2.1 presents a description of them and figure 2.5 shows their
degree distributions. "E-c" stands for Escherichia Coli (usually called E-
coli), "C-e" for Caenorhabditis elegans, "prot." for proteins, "metab." for
metabolic and "p-1" for power-law. Networks that are directed has an out-
and an in-degree distribution.

The world wide web network is a small piece extracted from a larger
piece (3.25 - 10° nodes) which was downloaded from the home page of A.L.
Barabasi [20]. Here, the smaller piece of the WWW is used because the
calculations would take too much time otherwise. In order to get a good
representation of the larger network, the small piece was extracted using a
breath-first algorithm with a probability condition inversely proportional to
the degree of the selected node. That is, at each step, a node, i, is selected
with the probability P(select) = 1/k;. When the extraction get stuck, is
starts all over from the top and tries again to select the nodes that previously
was denied. This makes sure that the small network roughly has the same
degree distribution as the bigger one but with a reasonable size dependent
cut-off.
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Network Nodes Links Size | kayv | degree distr. Ref.

Stockholm Roads Intersections | 3325 | 1.5 | Expon. tail 16

US Airports | Airports Flight routes | 332 6.4 | Expon. tail 19

WWW Web pages | Hyperlinks 9999 | 2.2 | Out:p-1 (v =2.6) | [20
(URLs) In: p-l1 (y =2.3)

Internet Routers connections | 6474 | 1.9 | p-l (v =2.2) 21

YPD (yeast) | Proteins Prot.-prot. 848 | 2.1 | Out: Expon. tail | [8],[9]
interactions In: Expon. tail

E-c prot. Proteins Prot.-prot. 1522 | 2.7 | Out:p-l (v = 2) [11],[12]
interactions In: Expon. tail

E-c metab. Chemicals | Chemical 851 | 4.6 | Out:p-1 (v =2.2) | [20]
reactions In:p-l (v = 2.2)

C-e metab. Chemicals | Chemical 503 | 4.3 | Out:p-l (v =2.2) | [20]
reactions In:p-1 (v = 2.2)

Table 2.1: Descriptions of eight real networks ranging from different man made systems
to different biological systems. "E-c" stands for Escherichia Coli (usually called E-coli),
"C-e" for Caenorhabditis elegans, "prot." for proteins, "metab." for metabolic and "p-1"
for power-law. Networks that are directed has an out- and an in-degree distribution.

2.4 Tools for working with networks

2.4.1 Randomization

3 It is often instructive to compare the structure of the network with a ran-
dom version of the same network. This is to show the structural differences
from a random network. Often it is also important to keep certain features
when randomizing in order to exclude them as the reason for the differences.
Since the degree distribution is the most striking feature of a network, the
randomization used in this thesis will keep the degree distribution fixed [14].
The rewiring is done in the following way (fig. 2.6 a):

1. Randomly pick two links in the system, each with the probability
1/kor. The first connected to nodes ¢ and j and the second to nodes [
and m.

2. Swap the links so that ¢ connects to m and [ to j. If these new links
already exists the swap is canceled and the procedure starts over at
step 1 again.

This randomization will give a structureless network and keep the degree of
each node and thus also keep the degree distribution of the whole network
constant. In the case of a directed network the links are swapped so that
both the in- and the out-degree of each node is kept constant (fig. 2.6 b).
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Figure 2.5: Cumulative plot of the degree distribution for eight different real networks.
In the case of a directed network the plot is showing both the in- and the out-degree
distribution.

2.4.2 Degree correlation profile

Networks with the same degree distribution can have very different struc-
tures. One measurement to capture some of these differences is the degree

correlation profile [14]. The degree correlation profile of a network shows if

there are any non-random patterns of connections between specific sizes of
nodes. that is, if low degree nodes are more connected to each other than
in the random version of the same network or if they are more connected
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a) b)
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Figure 2.6: a) Undirected randomization that keeps the degree of each node. b) Directed
randomization that keeps both the in- and the out-degree of each node.

to high degree nodes instead. Here, the degree correlation profile will be

defined as
n(k;l, k])
< nrandom(kia k]) > ’

R(ki, k;) = (2.6)
where n(k;, kj) and < npandom(ki,kj) > is the number of links that are
connected between a node of degree k; and a node of degree k; for the real
and the randomized version respectively. The <> means an average over
many randomization. Since the degree distribution isn’t continuous over
all sizes between 1 and N and that there are very few links between nodes
of exact sizes, groups of nodes (bins) are used instead. R will then be a
measurement of the number of links that goes between nodes in certain bins.
The fewer bins one uses the better statistic one gets (more nodes to average
over), but the amount of information it gives about the network decreases.
Three bins will be used in this thesis, low, medium and high. The boundaries
are

0 < Low < kLS,
kM6 < Medium < kY2,
kL2 < High < kmag

where k4. is the degree of the largest hub. The R values makes up a
3 x 3 matrix (low-low, low-medium, medium-low etc.) and is plotted as a
2D surface with a color scheme representing the R value.

2.4.3 Z-score

Measurements like the degree correlation profile are based on a comparison
between a number for the network that is being studied and an average num-
ber for the randomized versions of the same network. The difference in the
numbers also has to be confirmed by how likely it is that these numbers comes
from the same distribution assuming that they are normally distributed. The
Z-score in this case is the difference between a number and a mean, normal-
ized with the standard deviation of the parent distribution of the mean [14].
The Z-score gives the difference in units of standard deviations and thus a
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significance value. The Z-score is given by

T; — T
Z = 2.7
o 9 ( )

where z; is the number to be tested, Z and o is the mean and the standard
deviation respectively of the distribution of numbers from the randomized
networks. This means that if the Z-score is equal to two, the probability
of drawing a number =z > z; from the distribution of numbers from the
randomized networks is 2.3 procent and for Z = 3 the probability is 0.1
procent. In this thesis the latter significance level will be used which means
that all Z-scores that are bigger than three or smaller than minus three will
be considered as significant.

Sometimes one wants to compare to numbers where both are an average
over a large number of samples. In this case the question is how likely it is
that these two means are the same. The Central limit theorem states that
a sum of independent, identically distributed random variables approaches
a normal distribution as the sample size approaches infinity (page 284 of
reference [7]). This means that the average of a large sample is normally
distributed with the mean equal to the average value and the standard devi-
ation equal to the standard deviation of the individual observations divided
by the square root of the sample size. The hypothesis that two averages (Z;
and Z5), made up of independent normally distributed random variables, are
the same gives the Z-score

7 == (2.8)
o1 93
M TN

(page 422 of reference [7]). The difference between them will be given in
units of standard deviations and the significance level used will be the same
as in the previous case above.
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Chapter 3

Merging and regeneration

3.1 Background

The field of studying networks is very young but there has been a lot
of studies made on real networks and especially their degree distribution.
These studies show that a surprisingly large number of networks have a
broad (scale-free) degree distribution. Biological networks (proteins, reac-
tions etc.), social network s (e.g. sexual relationships, research collabora-
tions) and modern information networks (internet, the world wide web etc.)
all have this common feature [4]. So, an obvious question became, why this
is the case, is there a universal rule in nature that governs the build up of
these networks? R. Albert et al. presented a proposal that said that a scale-
free network is roboust against random attacks (since a random attack most
likely will hit a low degree node) but this also means that such a network is
weak against deliberate attacks (hitting a high degree node will influence the
network a lot). The idea is then that nature perhaps would like to protect
itself against random mutations and thus develops this scale-free feature [1].
Several models have been presented to explain this phenomenon (the most
famous one is probably preferential attachment [2]) and they all most likely
give a good clue of whats really going on. Beom Jun Kim et al. developed a
model in 2004 which give self organized scale-free networks based on merging
and regeneration [13]. The model turned out to be very robust and gave a
scale free degree distribution. Even though a lot has been published on this
subject not much has been done with directed networks. This, in spite of the
fact that many of the real networks are directed! Many biological networks
are directed not to mention the WWW, and it’s easy to imagine others, like
for example companies investing money in other companies. The question
is now, what happens if we treat the network in the merging process as di-
rected instead? A directed network has one dimension more of complexity
since each node now have an in- and an out-degree and thus also an in-
and an out-degree distribution. Since a node is connected with its neighbors

19



20 CHAPTER 3. MERGING AND REGENERATION

through in- and out-links there might be an asymmetry due to how one treat
the different links in the model. Will this give different results?

Due to the directedness of the network this can be done in several ways.
Here, two types will be considered, Friendly merging and Hostile merging.

3.2 The model

The model is based on merging and regeneration of nodes. That is, two
neighboring nodes merge to one larger node and a new small node is put
into the system to keep the system size constant. This model can be seen
as the evolution of companies that invest money in other companies and by
that have some control over them. So, if company A has invested in company
B there is a link from A to B. This means that the big companies have a
lot of in- and out-links, since they have a big turnover of money, and small
companies will have few links. The model is then to let the companies buy
up each other and restart from scratch until a steady state has been reached
and the average size of a company is constant.

3.2.1 Friendly merging

Figure 3.1: a) Node i is randomly picked to merge with one of its out-links neighbor,
j. b) Node i gets all the links that are connected to j except the ones they have in
common and the ones pointing to each other (Ncommon,in and Neommon,out), SO one node
and two links are taken away from the system. Node ¢ thus get the in- and out-degree,
ki in = ki in + kj,in — Neommon,in and ki out = ki out + kjout — Neommon,out. ¢) One node
and two links are put in at random to keep the system size constant.

If company A makes a friendly takeover and buys up company B, all the
assets of B will belong to A. The companies that had money invested in B
will now have investments in A instead and the ones with investments in
both of them will now only have investments in A. The same thing happens
for those that both A and B have investments in. So, Total merging means
that a node gets all the links from the neighbor that it merges with (except
the ones it already has). In network language, the following will be done at
each step (fig. 3.1):

1. Randomly pick a node, 4, with in- and out-degree k; ;, and k; ou:.

2. Randomly pick one of its neighbors, j, with in- and out-degree k;;,
and kj out, through one of the out-links of 1.
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3. Move all the links (in- and out-links) connected to j, so that they
connect to ¢ instead. Node ¢ will now have the in- and out-degree
ki,in = ki,in“‘kj,in_Ncommon,in and ki,out = ki,out+kj,out_Ncommon,out-
The term Kcommon,in/out 18 the number of links that will disappear
because ¢ and j have links to the same nodes or to each other, since it
is not allowed to have several links to the same node or links pointing
to itself.

4. Put in a new node, [, with degree zero, kj ;, + k; ot = 0, and 7 number
of links that connects randomly in the system.

The number r is a parameter that decides how many links there are in the
system. When two nodes merge, several links will be removed (kg in/out)
from the system. If r is bigger than that, the total number of links in the
system will increase until < kg ;, + kq 0wt >= 7 and steady state is reached.
And of course the opposite will occur if r is smaller than the number of links
removed at each step.

3.2.2 Hostile merging

Figure 3.2: a) Node ¢ is randomly picked to merge with one of its out-links neighbor,
j. b) Node i gets all the out-links that are connected to j except the ones they have in
common and the ones pointing to each other (Ncommon,in and Neommon,out), SO one node
and two links are taken away from the system. Node ¢ thus get the in- and out-degree,
kiin = Kiin — Neommon,in and ki out = Kiout + Kjout — Neommon,out and the end of the
links pointing to j is moved to a random node. c¢) One node and two links are put in the
system at random to keep the system size constant.

If company A instead makes a hostile takeover and "steal" all the assets
of B, the companies that had money invested in B will not be allowed to
have control over A. So in this case these companies will be forced to sell
their parts in company B and invest the money somewhere else. And again,
in the case of both A and B having money invested in the same company,
this company will, after the takeover, only have A as an investor. Hostile
merging thus means that a node gets all the out-links from the neighbor that
it merges with (except the ones it allready has). This can then be translated
to the following update rule:

1. Randomly pick a node, %, with in- and out-degree k; ;, and k; ou:.
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2. Randomly pick one of its neighbors, j, with in- and out-degree k;;,
and k; out, through one of the out-links of 7.

3. Move all the out-links starting at j, so that they start at ¢ instead,
and move all the links coming in to B so that they point to a random
node. Node 7 will now have the in- and out-degree k; i, — Ncommon,in
and ki out + kj.out — Neommon,out Tespectively. All the nodes that had
links to B will have the same degrees as before. The term Neommon,out
is the number of links that will disappear because ¢ and j have links
to the same nodes or to each other.

4. Put in a new node, [, with degree zero, k; ;, + ki oyt = 0, and r number
of links that connects randomly in the system.

The number r is the same parameter as for Total merging. Notice also that
in this case Neommon,in can only be one or zero depending on if company B
also have investments in A (i = j).

3.3 Results

3.3.1 Friendly merging

Figure 3.3 a) is showing the cumulative out-degree distribution for three dif-
ferent system sizes of networks constructed with the friendly merging model.
The out-degree distribution is a power-law (P(k) o< k~7) with an exponent
of v = 2.2 for r = 8 and reaches, for large systems, over about 2 order of
magnitudes. The slope of the degree distribution is not dependent on the
system size but it is dependent on the parameter r. In figure 3.3 b) one can
see that the degree distribution is shifted to the right when r is increased
(more links are added to the system) and the slope gets a little bit flat-
ter. Eventually the power-law will break down because kot is approaching
N(N —1). One could expect that there would be a difference between the
in- and the out-degree since there is a preferential merging to nodes with a
high in-degree (high in-degree gives more nodes that have the potential to
merge with you). But the in- and the out-degree distribution is exactly the
same (fig. 3.3 c), which indicates that the friendly merging is completely
symmetric in how the in- and the out-links are treated. As figure 3.3 d)
shows, this seems to originate from the fact that each node has, on average,
the same in- and out-degree. Figure 3.3 e) and f) is showing the dynamics
of how the the degree of the largest node evolves during the merging process
for a system of size N = 5-103.

One can see that it stabilizes already at a number of mergings around
2 times the number of nodes in the system. These figures are also showing
the symmetry between the in- and the out-degrees. To investigate further
why this is the case one can write down the rate equations for the degree of
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Figure 3.3: Friendly merging: a) Cumulative plot of the out-degree distribution for
system sizes N = 5-10%, 2-10*, 8-10" (r = 8). The fitted line is a power-law with
an exponent y = 2.2. b) Cumulative plot of the out-degree distribution for » = 4, 8, 16
(N =2-10%). The two fitted lines are power-laws with exponents v = 2.25 and v = 2.15.
¢) Cumulative plot of the in- and the out-degree distribution (r = 8 and N = § - 10*). d)
Average in-degree as function of out-degree for a node (N = 5-10%). d), f) Largest out-
and in-degree respectively as function of merging steps (N = 5 - 10°).

a node. Since the merging is symmetric when ¢ merges with j in the sense
that it doesn’t matter which node is removed and which one is kept, the
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equations can be written as

ak'z out kl in
N ’ = ’ P k’z’ou ,k' ou k’ ou _Ncommoni ou
ot kl,out ( out> B t)( Lot o t) i
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C'ou kz out) -’ kz ou
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Cin(kisin) - Kiin
P(ki,ina km,zn)¥

km,out

+r (3.2)

The first term on the right hand side (in equation 3.1 and 3.2) is the num-
ber of links that node i gets at each time step (merging step) when node
[ merges with node i. The second term is when node ¢ merges with node
J, the third term is the number of links that node i looses when two of
its neighbors merges with each other, and the forth term is the number
of links that node i gets from the random links that are put in the sys-
tem. P(ky in/outs Ky,injout) 18 the probability that a node of degree k; iy, /oy 18
linked to a node with degree ky i /out and Cip, jout (Ki in/out) is the fraction of
possible mergings that the neighbors of node ¢ can do. Both C}, /out(ki,in /out)
and P (kg in/outs Ky,in/our) are impossible to write out exact due to the com-
plexity of the network. P(ky in/outs Ky, in/out) depends on a non-trivial degree
correlation, but in this case the out- to out-degree correlation is the same
as the in- to in-degree correlation in the steady-state (see fig. 3.4 a and b).
This makes it possible to take out P(ky i /out, Ky,in/out) from equation 3.1
minus equation 3.2. So, in the steady-state we have the following difference
in rates between the in- and the out-degree of a random node:

Okiout  Okiin Ei in
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_ Kiin
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ki ou kl n
_(Cout(ki,out) L out - Czn(kz,m) :

m,out km,out

). (3.3)

The two first terms on the right hand side does’nt say very much since they
represents the degree of a neighbor. The third and the fourth terms on the
other hand says that if node ¢ has more common out-links than in-links with
a neighbor, the growth if the out-degree will be slowed down compared to
the growth of the in-degree. Simply because the number of common links
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Figure 3.4: Degree correlations in the friendly merging network. a) out-out correlation,
b) in-in correlation and c) out-in correlation. The upper row shows a color representation
of log(R) (R from eq. 2.6) and the lower row of the Z-score, Since the R-value from
both the merging and the randomized version is an average over many networks, the Z-
score comes from equation 2.8. Values close to zero in the upper row means a very small
difference from the random version and in the lower row it means a difference that isn’t
significant.

for ¢ and j is proportional to k;k;. The same thing will happen to the last
two terms: more neighbors gives a higher probability that some of these
neighbors are connected to each other and thus have the chance to merge.
So, this gives a hint about why this model is so symmetric. Simply put: the
more friends you have, the more friends you risk to lose.

The friendly merging model creates a network with a very non-random
degree correlation. Figure 3.4 is showing three different degree correlation
matrises (as described in section 2.4.2) where figure a is the out-out corre-
lation, b is the in-in correlation and c is the out-in correlation. All of them
look exactly the same (as suggested in eq. 3.3) which also shows the com-
plete symmetry between the in- and the out-links. The upper row in the
figure is showing log(R), where the R value comes from equation 2.6 and the
lower row is showing the Z-score, equation 2.8. The plots show that low-low,
low-medium, medium-medium and medium-low degree nodes has a signifi-
cantly higher number of connections than in the random case. On the other
hand, high-low, high-medium, low-high and medium-high degree nodes has
a significantly smaller number of connections. The high-high degree nodes
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Figure 3.5: Degree correlations in the E-coli metabolic network. a) out-out correlation,
b) in-in correlation and c) out-in correlation. The upper row shows a color representation
of log(R) (R from eq. 2.6) and the lower row of the Z-score, Since the R-value from the
randomized version is an average over many networks, the Z-score comes from equation
2.7. Values close to zero in the upper row means a very small difference from the random
version and in the lower row it means a difference that isn’t significant.

doesn’t show a significant difference at all. Since hubs tend to connect to
each other in a random network this implies that high connected nodes are
connected to each other also in the friendly merging network.

As a final observation one can see that the metabolic networks in section
2.3.3 have close to the same in- and out-degree distribution and with an
exponent of v = 2.2. They too actually approximately follows the pattern
shown in figure 3.3 d, with, on average, the same in- and out-degree of
each node. One can see in figure 3.5 that the E-coli metabolic network
has, like the friendly merging, more links between low degree nodes and
fewer links between low to high and high to low than random. The three
degree correlation profiles (out-out, in-in and out-in) also looks pretty much
the same. Is there a connection between the metabolic networks and the
friendly merging model?

3.3.2 Hostile merging

The hostile merging also gives a power-law but with an exponent around v =
1.55, with r = 8, for the out-degrees distribution. The in-degree distribution
in this case has an exponential tail (fig. 3.6 a and c). This model is also
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size independent and the parameter r has the same effect as for the friendly
merging with a decreasing exponent for an increasing r (fig. 3.6 a and b)
even though the difference is smaller in this case (y = 1.55 for r = 4 and
v = 1.6 for r = 16). Figure 3.6 is showing the average in-degree of a node
as a function of its out-degree and they are not proportional to each other.
From figure 3.6 e) and f) one can see that it takes more merging steps to
reach a steady state , around ten times the number of nodes in the system,
then for the friendly merging. And even though the size of the largest in-
and the out-degree is completely different they reach the steady state more
or less at the same time. The largest in-degree also fluctuates much less then
the largest out-degree which makes sense since the distribution of degrees it
can increase with is much more narrow.

The degree correlation of the hostile merging doesn’t show as much struc-
ture as for the friendly merging. Figure 3.7 a shows the out-out, b the in-in
and c the out-in degree correlation profile. One can see in figure o that
for the out-degrees there are significantly more links between low-low and
low-medium degree nodes and significantly less links between high-low and
high-medium degree nodes, than in the random version. The other bins
shows a somewhat significant, but very small, difference. The fact that there
are so little structure for the out-out could indicate that the narrow in-degree
distribution could make it difficult to get out-out correlations. In figure b
and ¢ there are a significantly larger number of links between the low and
medium bins than in the random case. The high bin seems to have roughly
the same number of links to all bins as in the random version for b and only
a small difference for c.

The comparison with degree distributions for this model would be the
YPD and E-c prot. in figure 2.5. They both have a much broader out-degree
than their in-degree.

3.4 Conclusions

The friendly merging gives a robust power-law degree distribution for di-
rected networks. The in- and the out-degree distributions are also exactly
the same which means that there, surprisingly, isn’t any asymmetry between
the in- and the out-degrees even though there is a preferential merging for
nodes with high in-degree.

The hostile merging also gives robust power-law degree distribution but
only for the out-degree. This model is remarkably close to the random merg-
ing considered in the undirected case [13]. In that case random nodes where
merged with each other without any regard of the under laying network. But
this is a very network-based model and still get pretty much the same result!
This can be explained by the randomness of the in-degree. The in-degree
distribution is narrow (has an exponential tail) and with a more random
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Figure 3.6: Hostile merging: a) Cumulative plot of the out-degree distribution for system
sizes N = 5-10%, 2-10%, 8-10* (r = 8). The fitted line is a power-law with an exponent
v = 1.55. b) Cumulative plot of the out-degree distribution for » = 4, 8, 16 (N = 2-10%).
The two fitted lines are power-laws with exponents v = 1.6 and v = 1.55. ¢) Cumulative
plot of the in- and the out-degree distribution (»r = 8 and N = 8- 10*). d) Average in-
degree as function of out-degree for a node (N = 5-10%). d), f) Largest out- and in-degree
respectively as function of merging steps (N = 5 - 10%).

structure than in the friendly merging. This makes a hostile merging over a
link very close to a random merging.
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Figure 3.7: Degree correlations in the hostile merging network. a) out-out correlation,
b) in-in correlation and c) out-in correlation. The upper row shows a color representation
of log(R) (R from eq. 2.6) and the lower row of the Z-score. Since the value from both the
merging and the randomized version is an average over many networks, the Z-score comes
from equation 2.8. Values close to zero in the upper row means a very small difference
from the random version and in the lower row it means a difference that isn’t significant.

Even though merging may not be the underlying process of how these
biological networks evolved, it shows that these characteristic features of
some of the biological networks aren’t unique and that they are fairly easy
to reproduce. It gives a hint about what’s important in the understanding of
biological networks and maybe there are things beyond the degree distribu-
tion that are more important. Either the degree distribution has little to do
with the function of the network, which means that the degree distribution
comes from something else, or these types of broad degree distributions are
universal for many different functions.
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Chapter 4

Multi-step degree correlation

4.1 Background

A very important question in network science is how the structure of a net-
work is linked to its function. If networks with different functions all have a
random structure it would indicate a separation between the structure and
the function. Thus a necessary signature for coupling between function and
structure is a non-random structure. As mentioned in part I, many of the
real networks have a very broad degree distribution. These networks stand
out from networks with narrow degree distribution because of the highly
connected nodes, hubs, that influences a very big part of the network. If
the hubs play a crucial role for the network function, their position in the
network should not be random. In a random network the hubs tend to link
to each other (P(k;,k;) o< k; - k;) and create a highly connected core. This
core will enhance the small world features (a small number of steps is nec-
essary to reach all nodes in the system) [17] observed already in networks
with narrow degree distributions. In this part, several real world networks
will be examined to answer the questions: are there any non-random degree
correlations at longer steps than one and if so, is it independent on the one
step degree correlation? Can the multi-step degree correlation also give a
hint about the relative position of hubs!?

4.2 Randomization keeping the degree correlation
constant

The algorithm for the randomization keeping the degree correlation constant
is a Metropolis algorithm with simulated annealing. The degree correlation
is measured in the same bins as in section 2.4.2 and thus makes up a 3 x 3
matrix. Fach element in the matrix contain the number of links that goes
between nodes of the size that the element in question represents. In each
step a random swap is made in the same way as in section 2.4.1, but with

33
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the probability of the Boltzmann factor
P(swap) = e AF/T, (4.1)

where AFE is the energy difference that the swap would give and T is a scaling
factor, a sort of "temperature". The energy function is defined as

i,j=3

E= | (Aij—Ty)? (4.2)

1,j=1

where A;; is the number of links in the system that goes from a node in bin %
to a node in bin j and T;; is the number of links that the final system should
have between bin ¢ and j, T is here called the target matriz. The energy
function is thus a scalar distance between the two matrises and F is equal
to zero if the two matrises are the same. So, a swap is automatically made
if it moves the degree correlation matrix (A) closer to the target matrix (T)
which gives a negative AE. But, if it moves it away from the target matrix
(positive AFE) the swap is only made with the probability in equation 4.1.
In this case however, we start from the target matrix and want the degree
correlation matrix to move away from the it in order to span over as much
of the configuration space as possible (get a network that is as random as
possible) and then get back to the target matrix. This is done by starting at a
high T which makes it easy to accept forbidden swaps and then slowly lower
the temperature so that the energy function settles in a global minimum
(E = 0). Thus, the resulting network will have exactly the same degree
distribution and degree correlation matrix as before the randomization.

If one wants to keep the complete degree correlation exact, each link
has to go between nodes of exactly the same size before and after the ran-
domization. This however puts a huge constraint to the number of possible
networks one can create. The outcome of this will be a very large overlap
(fraction of links that goes between exactly the same nodes as before the
randomization) between the real network and the randomized version of it.
By keeping only three bins, one makes sure that the overlap is small and
that most of the original structure of the real network is destroyed in the
same time as the degree correlation is roughly constant. How one chooses the
boundary’s of the bins is very important, especially in the lower range, and
shouldn’t be chosen arbitrarily. The degree correlation matrix is symmetric
for a undirected network but not for a directed network.

4.3 Multi-step degree correlation

The multi-step degree correlation is a measure of the average degree as a
function of steps taken out in the network. That is, starting from a certain
node, what is the average degree one encounters at each distance, stepping
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out in the network along the shortest paths? This is then averaged, per step,
over all nodes in the system that can reach that many steps. The equations

looks like
Ny;

1
< Kp; >= ~ Zk‘l,i,j, (4.3)
1i
7j=1
1
< K;>=— < Kj; >. 4.4
! N ; Li (4.4)

< Kj; > is the average degree [ steps out in the network from node i, N;; is
the number of nodes that node i can reach in [ steps and k;; ; is the degree
of node j that node 7 can reach in [ steps. < K; > is the total average
degree that an arbitrary node encounters [ steps out in the network and NV,
is the number of nodes that has at least one shortest path to another node
of length I. In order to get a separation between nodes of different sizes,
< Kj > is calculated from three bins defined in the same way as in section
2.4.2. That is, what does the average degree look like stepping out from a
node in a certain bin. To normalize it < K; > for a real world network is
divided by the same quantity averaged over many randomized versions of
the same network, < K; >,qndom-

4.4 Results

The global degree correlation (eq. 4.4) is calculated for six real world net-
works, Stockholm, US Airports, WWW (World Wide Web), Internet, YPD
(yeast protein-protein) and E-coli (protein-protein). The data for these net-
works is presented in section 2.3.3. The WWW, YPD and E-coli is in prin-
ciple directed networks with large asymmetries between in- and out-degrees.
These asymmetries are maintained in the randomization by keeping both the
in- and the out-degrees of every node (section 2.4.1). It is also the directed
degree correlation profile, out-in, that is kept when randomizing keeping the
degree correlation profile (section 4.2). In order to facilitate comparisons
with other networks the directionality are ignored in all the analysis.

Figure 4.2 is showing the global degree correlation for the six networks.
The continuous line is showing the average result starting from all nodes.
The dashed lines are showing the result for starting at nodes with a degree
in bin Low, Med. and High. The figure clearly shows that most of these
networks has a very non-random structure in the sense of degree sequences
along shortest paths.

Due to the small world effect from hubs, all the shortest paths longer than
a couple of steps will go through a hub. Often already at step one or two.
Since it’s an average over all nodes the total average degree as a function
of steps will decrease almost exponentially for both the randomized version
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and its parent network (see figure 4.4): most nodes reaches a hub in the first
step, a smaller number of nodes reaches a hub in two steps and so on. So,
it’s really the differences in the slopes of the curves that is informative and
this information is given in the < k > / < k, > curve.

Figure 4.1 shows a very simple example of the differences between step-
ping out in a network with hubs separated from each other (to the left in
the figure) and a randomized version of the same type of network (to the
right in the figure). In a network with a power-law degree distribution the
low degree nodes will dominate the total average of the global degree corre-
lation (since they are so many) so they are considered to give total average
in the example. The basic idea is that a network with hubs separated by
low and medium degree nodes and otherwise only connected to low degree
nodes gives a sick-sack pattern while the randomized version is more uni-
form. In the network to the left in figure 4.1, the low degree nodes will hit
a hub in the first step and in the fourth step. In the randomized case the
low degree nodes hits both hubs and low or medium nodes in the first step
which averages to medium. They will also pass the hubs in a short number
of steps and hit only low and medium degree nodes in their fourth step. This
gives rise to the curve in the bottom of the figure. Notice that the diameter
of the network shrinks a lot when randomized and many more nodes can
be reached in the same number of steps than in the parent network. It is
of course not this simple in real world networks but the basic shape of the
< k >/ <k, > curve gives a clue about the structure of the network. A dip
in step two is a strong indication of hub separation which effectively means
less links between hubs than in the randomized case. and if it takes several
steps to "recover" from the dip could mean that it takes many steps to pass
the hubs in the randomized case.

The results for a network that has hubs connected to each other and
to medium, medium connected to high, medium and to low and finally low
connected to medium and to low degree nodes will be almost the opposite of
figure 4.1. Now the low degree nodes will hit other low and medium degree
nodes and the hubs will hit other hubs and medium degree nodes while in
the randomized case all nodes will hit all types of other nodes. This means
that the < & > / < k, > curve will start below one for the total average
and above one for the high bin. For the total average the curve will start
to increase when stepping out in to the network until it hits the core (all
the connected hubs). This will be the maximum and the curve will go down
again along with the path hitting medium and low degree nodes until the
end of the network is reached.

All the data points presented in figure 4.2 and 4.3 have a significant
difference between k£ and k, due to the large sample size. Here the z-score
presented in equation 2.8 has been used.

A quick analysis of figure 4.2 tells us the following about these real world
networks:
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Figure 4.1: The figure is showing a very simplified example of the curve < k > / < k, >
as a function of [ for an extreme case and an explanation for the shape of the curve. The
upper part is showing average degree sequences when stepping out from a typical node
(s) in an example network (left) and a randomized version of the same type of network
(right). [ is the number of steps out in the network and < k > and < k, > is the average
degree for the example network and the randomized version respectively. The example
network has the properties of hubs separated by low and medium nodes and the hubs are
connected to a lot of low degree nodes. In the randomized version the hubs are connected
to each other and also to both medium and low degree nodes. In a scale-free network the
low degree nodes will dominate the total average because of their large number. This will
give the curve in bottom to the left. Starting from a hub will instead give the curve to
the right.

Stockholm

The curves for Stockholm has a very small dip for several steps before they
cross over the line < k > / < k, >= 1. The dip is showing that there is a
small hub separation but since the degree distribution is quite narrow, the
fluctuation in the degrees in the network is not very large which explains the
small amplitude of the curves.
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Airports

This network is quite close to random at short steps. The hubs are linked to
each other a little bit more than in the randomized version but they are also
linked to medium and low degree nodes. This makes sense since the flight
routes are constructed in a way to make the small world effect as large as
possible, you don’t want to change plane to many times flying from one side
of the country to the other side. The large cut-off in the degree distribution
(fig. 2.5) tells us that there are many hubs of approximately the same size
in the network which gives a large average degree and a very connected core.
This also gives a very short diameter of the network which is why the curves
in the figure stops at four steps.

WWWwW

This piece of the WWW is showing a clear dip for the total average very
close to the one in figure 4.1 and it tells us that the hubs are separated more
than in the randomized case. This makes sense since really big sites doesn’t
link to other big sites of the same type because of mutual clientele. The
fact that the curve goes down again in the end means that the hubs have
been passed even in the real world network with hubs separated. The curve
for starting from a high degree node is also showing similarities with hub
separation. High degree nodes are connected to low and vice verse.

Internet

Internet also has a dip in the total average, i.e. hub separation, but the
recovery is slower and < k > never seems to be larger then < k, > except
at step one. This could mean that the hubs are not really separated by
several steps but only in the sense of fewer links among them than random.
Another interesting feature is that the High-curve and the Low-curve are
almost reflections of each other.

YPD

This network is also showing a dip but has, like Stockholm, a more narrow
degree distribution than for example Internet and WWW. This again means
that the fluctuations in degrees are smaller which gives a smaller dip. It
is very clear though that the curve goes up in the end which points to a
conclusion that some hubs are actually separated by at least two steps.

E-coli

The E-coli curve looks a little bit funny. It goes up at step two, down at step
three and up again at step five. The curve also starts at one which indicates
that the number of connections between hubs are approximately the same
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Figure 4.2: The figure is showing, for six real world networks, the average degree as
function of the distance from a typical node divided by the same quantity averaged over
many randomized versions of the same network (eq. 4.4). The randomization used is the
one described in section 2.4.1 which keeps the degree distribution constant. The curve
Low is an average over starting at a node with a degree in the low bin, Med starting in
the medium bin and High starting in the high bin (see section 2.4.2 for bin boundaries).

as in the random case. The shape of this curve could come from a structure
where a few large hubs are connected to several other hubs while in the ran-
dom case these links are more homogeneously distributed among the hubs.
This would mean that one would almost always hit one of these larger hubs
at step two but not in the random case and at step three they have been past
more often than in the random case. The fact that the curve goes up in the
end indicates that there are several hubs that are separated by several steps.
This network has a very connected hub, a protein called RNA P70, which is
connected to about half of the nodes in the network including several other
hubs.
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Figure 4.3: The figure is showing, for six real world networks, the average degree as
function of the distance from a typical node divided by the same quantity averaged over
many randomized versions of the same network (eq. 4.4). The randomization used is
described in section 4.2 which keeps both the degree distribution and the degree correlation
profile. The curve Low is an average over starting at a node with a degree in the low bin,
Med starting in the medium bin and High starting in the high bin (see section 2.4.2 for
bin boundaries).

One thing that should be tested is if these non-random patterns are a
direct result of the one step degree correlation or if there really is something
beyond the first step. Figure 4.3 is showing the same plots as figure 4.2 but
the randomization has kept the three bin one step degree correlation profile
(section 4.3). The amplitudes of the deviation from the < k > / <k, >=1
line seems to decrease but the over all shape of the curves are still there.
The curves would have started at the value one if the degree correlations
had been kept exact but in this case it can at the best move much closer.
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Figure 4.4: The figure is showing, for six real world networks, the average degree as
function of distance from a typical node. The three curves in each plot is showing the
result for the real world network, the randomized version from figure 4.2 (Random) and
the randomized version from figure 4.3 where the degree correlation profile is kept constant
(Rand.corr.). The error bars are smaller then the thickness of the curves.

4.5 Conclusions

The real world networks examined here clearly possesses non-random struc-
tures in the sense of degree sequences along shortest paths in the network.
The structure can be traced for several steps and gives more insight about
the network than the one step degree correlation profile. It is also clear
that the multi-step degree correlation isn’t effected very much by keeping
the one step degree correlation constant when randomizing. The amplitude
is without doubts effected but not the over all shape of the curves.

The positioning of the hubs are very important in this measurement and
the results are showing that the hubs are not positioned randomly but, in
most cases, separated from each other.






Future projects

The work behind this thesis has opened for a lot of questions and future
projects, here are some ideas:

e Connecting the Merging model to real world systems: What
kind of real world systems could be described by the merging model,
what similarities do they have and what are the differences? Is it
reasonable?

e Improve the method to extract smaller networks: How can
the method to extract smaller networks from a larger one (in section
2.3.3) be improved. What kind of features is it capturing and what
kinds is it not? The same question for a simpler method without the
probability condition. Is that the method most often used, and in
that case, what kind of errors could be expected when using it? And
finally, if a method is developed that keeps the most important features
of a network, could it be used to find out how for example different
measurements are scaling with the size of the network?

e Use the randomization keeping the degree correlation profile
to create other profiles: It can sometimes be handy to have a net-
work with a certain degree correlation profile. The method described
in section 4.2 could be used to create wanted profiles. How would for
example a completely democratic network (all nodes have the same
probability to be connected to nodes of all sizes) look like?

e Develope randomizations which keeps other features of a net-
work: In the quest for connecting the structure of a network with
its function, questions like "what are the key features that explains a
certain behavior of a network?", is very important. A randomization
like the one in section 4.2 but with another energy function could be
a big help for finding the answers.
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