PHYSICAL REVIEW B 67, 144514 (2003

Search for a vortex loop blowout transition in a type-ll superconductor in a finite magnetic field
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The three-dimensional uniformly frustrated¥ model is simulated to search for a predicted “vortex loop”
transition within the vortex line liquid phase of a strongly type-ll superconductor in an applied magnetic field.
Results are shown to strongly depend on the precise scheme used to trace out vortex line paths. While we find
evidence for a transverse vortex path percolation transition, no signal of this transition is found in the specific
heat.
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[. INTRODUCTION dence for Téanovics transitionTy, .
In order to further investigate this issue, we have carried

In pure extreme type-Il superconductors, such as the higheut new simulations on the 3D uniformly frustratedY
T. superconductors, the Abrikosov vortex line lattice meltsmodel, both repeating the approach of Nguyen and co-
via a sharp first-order phase transitionto a vortex line ~ workers, and measuring new quantities that make a more
liquid as the temperature is increased above a crifigal direct test of Teanovics theory. After correcting certain in-
The properties of this vortex line liquid phase have been thgonsistencies in the earlier numerical work, we show that
subject of considerable investigation. Theoretical argurientsvhether or not one finds indications of a vortex loop blowout
and early simulatioris® suggested that the vortex line liquid transition depends crucially on how one chooses to resolve
might retain superconducting phase coherence parallel to théortex line paths at points where two or more lines intersect.
applied magnetic field, within some temperature intervalMaking the choice that favors the blowout interpretation, we
aboveT,,. Later, better converged simulati6nfound that ~ find the critical exponenv=1, rather than the value 2/3
phase coherence is simultaneously lost in all directions upo@xpected for an inverted 3RY transition. Finally, we make
melting. high-precision measurements of the specific heat, in search

Subsequently, Tesiovid proposed that, for small mag- of a thermodynamic signature for a blowout transition, but
netic fields, there still remains a sharp thermodynamic phasgo such signature is found.
transition at a temperatuii;, within the vortex liquid state,
associated with diverging fluctuations of closed vortex loops, Il. MODEL
such as drive the superconducting transition in the zero
magnetic-field case. Considering the limit of infinite penetra- The model that we use is the 3D uniformly frustrabed
tion length\, Tesanovicproposed that, in a finite field, the model?~®#~*%"which models a type-Il superconductor in
fluctuations of the magnetic-field-induced vortex lines act tothe limit of infinite magnetic penetration length—, and
screen the interactions of thermally excited closed vortexs given by the Hamiltonian
loops, in the same way that magnetic-field fluctuations
screen the vortex loop interactions of a finitenodel in zero
applied magnetic field. Pursuing this argument, he predicted HL6i]= _iE J,C08 01— 0= A ). @)
that the proposed vortex loop “blowout” transition ai, "
may be an inverteXY transition, as is the case of the zero- Herej are the nodes of a cubic grid of sitgs=x, y, andz

field Meissner transition for the finite model. Suggestions gre the directions of the grid axes; and the sum is over all
claimed in simulations by Ryu and Stro2id. the superconducting wave function on sitg A,
Following Tesnovics predictions, Nguyen and =(277/<D0)f}“‘A-dr is given by the integral of the mag-

co-worker§™ carried out numerical simulations of the netic vector potential across the bond at sitan direction
three-dimensional3D) uniformly frustratedXY model of a . P

type-ll superconductor. They claimed to find evidence fors, and®e=hc/2e is the flux quantum. The argument of the
Tesanovics transition, which they associated with the forma- COSine is the gauge-invariant phase angle difference across
tion of a vortex line path that percolates entirely around th¢he bond. The circulation of th&;,, around any plaquette of
system in the direction transverse to the magnetic field. ~ the grid is equal to 2 times the number of flux quanta of

Most recently, measuremehts on high-purity = Magnetic field penetrating the plaquette. WeAtake the mag-
YBa,Cu;0; (YBCO) single crystals produced evidence of a netic field,B=V X A, uniform and parallel to the axis, with
steplike anomaly in the specific heat at a temperature highex fixed density of flux quanth=Ba?/ ®, per plaquette of
than the meltingT,,, reminiscent of an inverted mean-field areaa®. We take the couplingd,, to model an anisotropic
transition. It has been argutdhat this feature may be evi- system, withd,=J,=J, andJ,<J, .
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Simulations were carried out varying tleaccording to a is more than one vortex line entering and exiting a give unit
usual Monte Carlo scheme; ti¢, were held fixed. That the cell of the grid; it is therefore ambiguous which entering
Aj,, do not fluctuate, and that they give a uniform magneticsegment to connect to which exiting segment. It was previ-
field, are the consequences of the—c approximation. ously showr® by one of us that the method chosen to resolve
Simulations were carried out dn,XL? cubic grids, using such intersections can have a dramatic effect on the statistics
periodic boundary conditions. Except where otherwise noteddf closed thermally excited loops in the zero-fiele-=0
our runs were typically for 1/4 to 12210° Monte Carlo model. Here, for thé>0 model, we consider two different
passes through the entire lattice. schemes, which we henceforth refer to as metftipcand

While we simulate in the phase angle degrees of freedormnethod(ii):

6, our interest lies in the behavior of the vorticity in these (i) At each intersection we choose randomly, with equal
phase angles. Latdenote thelual sites of the original grid; ~ probability, which entering segment connects to which exit-
these are the sites at the centers of the unit cells of the gridng segment. In thé =0 model this scheme was found to
We denote by ¢ 1) the plaquette which is the face of the give results closest to theoretical expectatib"nsl-0 .

unit cell centered on dual si® with normal in thew direc- (i) L\/Iouvated by Nguyen and co-_worke‘f*s,_ we first
tion, u=x, y, andz We define the integer vorticity, search® through all possible connections to find a path

piercing plaquette, ) by computing the circulation of the With Rze=0 andRy, or Ry,#0. Such a path winds around

gauge-invariant phase angle differences around the plaquetfd® System transverse to the field, without ever winding
around the system parallel to the field. If one such path is

found, it is selected as a patH contributing to the “loops,”
(SE) [0i+6— 0i—Aig]=2m(Ng,—6,,), (20 and we then repeat the proceedure applied to all remaining
# vortex paths. When all such transverse paths are found, the
where the sum is counterclockwise around all bonds formingemaining vortex line intersections are resolved randomly, as
the boundary of plaquettes (), and the gauge-invariant in method(i).
phase angle differences are restricted to the interval Using either methodi) or method(ii) we thus decompose
(=, ). In a constant magnetic field, the condition that thethe vorticity of any given configuration into disjoint closed
total-energy density remains finite can be shown to yield thevortex line paths, consisting of a det} of “lines” and a set
“neutrality” constraint (see Sec. Il A, {a'} of “loops.”

Es ns;/,zﬂ-il-z5z;u (3) IIl. WINDING OF FIELD-INDUCED VORTEX LINES

We first attempt a direct test of Tasovics theory of the
i.e., the total vorticity piercing any plane at constanis T, transition within the liquid phase. A summary of his ar-
fL? ; these are the magnetic-field-induced vortex lines. Theguments for the existence of this transition is as follows.
total vorticity in the transverse directiomxsandy is zero.
Taking the vorticityns,, as the directed bond of the dual A. Summary of Tesanovic's theory

grid, emanating from sits in direction 'Z‘ the vorticity so First, a duality transformatidfi-*’ from the XY model of
defined is divergenceless, forming continuous lines that, dugq. (1) gives the interaction between vortices as

to the periodic boundary conditions, must ultimately close

upon themselves. We will label such a closed vortex path by 1
the indexa, and define the vectdr, as the net displacement ~ H[Ns,1= 5 E [Ny =87, IVA(rs—rs)Ng = 2,1,
one travels upon following the patl from a given starting SIS (4)

point until returning back to that point as the line closes back
on itself. If R,=0, then the vortex line path is a closed loop WhereV#(r) is the appropriate anisotropic generalization of
of finite extent that exists as a thermal fluctuationR}f,  the Coulomb interaction, with Fourier transfokif~q~2. It
=mL,, with man integer, then such a vortex line path rep-is this singularity ofVg asq— 0 that yields the constraint of
resentsn of thefo field-induced vortex lines; thesrlines Eq. (3).

are mutually connected to each other via the periodic bound- Next, one imagines decomposing the total vorticity of the
ary conditions in the direction? Form>1, we can say that system into lines and loops,

the m field-induced lines are geometrically entangled with

each other. IR,,=mL, orR,,=mL, , then the vortex line Nsp
path windsm times around the systemnansverselyto the |t we define

applied magnetic field. We will be particularly interested in .
vortex line paths for whiclR,, =0, butRy, or Ry,#0. The bs,= n's”;es— £6,,, (6)
set of vortex line path$a} for which all R,,>0; we will
henceforth refer to as the “lines;” these are the field-inducedNen=

i |
=ng, S+ ng s, (5)

«bs,)=0 and the Hamiltonian of E¢4) can be re-

vortex lines. All other vortex paths we will refer to as the written as
“loops.” 1

In order tq trace vc_)rtex Iine_ paths, one needs to know the == 2 [n'sfifps_ bsM]V”(fs—fs')[”Bﬁ)s— bsr 1. (7)
way to treat intersections. An intersection occurs when there 255
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Tesanovic then argued that a coarse graining of vortexis the net vorticity of the magnetic-field-induced vortex lines

fluctuations, in the vortex line liquid phase, leads to an efin the transverse directiop. The two-dimensional vector
fective hydrodynamic Hamiltonian on long length scalesW:(WX,Wy) defined above is the integer-valued “winding

which has the same interaction piece as &g, but which
has a new additive term proportional meﬁﬂ. The result-

number” that counts the net number of times the field-
induced vortex lines wind around the system in the trans-

ing long length scale Hamiltonian then has exactly the samgg e girectiong andy. If {«} is the set of vortex line paths
form as that of a zero-field superconductor with thermallythat define the field-induced vortex |inag1es andR . is the
uw a

fluctuating vortex loopsn'°*, and a thermally fluctuating

su

magnetic fieldos, whose average is zero, i.e., the zero-fieldy g

superconductor with a finite penetration length In other
words, in thisinfinite X theory atfinite magnetic field, the

long-wavelength fluctuations of the field-induced vortex

lines n'nes

loops
Nsu | ; _
tions screen the interactions between vortex loops finite

N model atzeromagnetic field.

The Meissner transition &k, in the zero-field, finitex,
model is aninverted 3D XY transition® The high-
temperature phas@&>T, has vortex loops on all length
scales and breaks a globa(ly symmetry associated with a
disorder parameter® the low-temperature phase<T,. has

net displacement along path as defined earlier, then
«Ra1 =WL, , whereR, =(R,,R,). We thus expect from
Eq. (10) the finite-size scaling

(W2~ f(tL ™). (12)

su  Screen the interaction between the vortex loops
in exactly the same manner as magnetic-field fluctua-

Note that the neutrality condition of E¢3) implies that

the total transverse vorticity in the system must always van-
ish. Forw =0, it is therefore necessary that any such wind-
ing of the field-induced lines is exactly canceled out by an
equal and opposite transverse winding of the loops. In the
thermodynamic limit,L, —o, Eq. (9) implies that(W?)

=0 for T<T4, and({W?) increases continuously from zero
as one increaset>Tg . The proposed transition &ty is

no vortex loops on sufficiently long length scales. The cor-thus associated_with the appearance of infinite transverse
relation length ¢ and renormalized magnetic penetration loops (see following Sec. V.

length A\ both divergé® as ~[t| =, with v=2/3 andt=T
-T..

Earlier we have carried out numerical simulatibhsf
this zero-field, finite\, Meissner transition. We demon-

Another interpretation of th@, transition follows from
the “two-dimensional(2D) boson” modef® of interacting
vortex lines, in which the field-induced vortex lines are
viewed as the world lines of two-dimensional bosons travel-

strated that, in this model, magnetic-field fluctuations obeyng down the imaginary time axis. FAr<Tg where(W?)

the finite-size scaling relation
F(t,0,L)=(b,(qr)b,(—qu)/L3~L *F(tL*",qL,1),
€S)

where in the above. L v and bM(qi)zEse*‘q;‘erSM is the
Fourier transform of the magnetic-flux density, . As L
—oo, andq—0,

0
1/¢

t<O,

F(t,000)~ >0

9
hence F(t, 0, «) vanishes below the transition, and in-
creases continuously from zero as one goes above the tr
sition.

In the present case of a finite magnetic field, if aiesv-
ic’s mapping is correct, the Meissner transitibp becomes
the transitionT ¢ within the vortex line liquid phase, and we
expect the exact same scaling as that in Bgabove, when
applied to the quantityos, defined in Eq.(6). Taking the
limit of g—0 in Eq.(8), and applying to systems with fixed
aspect ratid_,=gL, , we expect the scaling

2
<(ES bsﬂ> >/Lf~Lilf(tLi’”), (10)
wheret=T—-Tg andf(x)=F(x, 0, 1).
For the directiongt=x ory,
ES bSM=ES NIeS=W,,L, (12)

=0, the field-induced vortex lines behave ligeargedtwo-
dimensional bosors!’ with a long-range retarded Coulomb
interaction. In the vortex line liquidT,,<T<Tg, where
phase coherence is lost parallel to the applied magnetic field,
the analog 2D bosons are inchargedsuperfluid state. For
T>Tg, where(WZ);éO, screening by the infinitely large
loops n'solfps results in an effective short-range interaction be-
tween the field-induced lines. In this case the winding num-
ber squaredW?) is proportional to the superfluid density of
what is now anunchargedsuperfluid. ThusT4 corresponds

to a transition between a charged superfluid and an un-
charged superfluid in the analog 2D boson theory. Equiva-
lently, if one considers the quanta that mediate the interaction

atween the analog 2D bosons, the transition is from mass-

less quanta folf <Tg4 to massive quanta foF>Ty, .
To arrive at Eq.(12), we considered the transverse com-
ponents of Eq(10). However, we can also consider the par-

allel, »=2z component. Now,

z bsz=§S) nines— 121, =W,L,, (13
and so we expect the scaling
(WE)~f(tL1"). (14)

If {«} is the set of vortex line paths that define the field-
induced vortex linesil’®®, andR, is the net displacement
along path « as defined earlier, thenEaRaz=(fo
+W,)L,. ThusW, gives the number of “lines” in excess of

the average vaIuéLf set by the applied magnetic field. The
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FIG. 2. Winding(W?) vs T/J, for L, =10, 20, 30, 40, and 60,
with vortex densityf=1/20, anisotropyJ,=0.02], , and aspect
ratioL,=L, . (W?) is computed using methdd), i.e., we first find
all percolating transverse loops. Curves/@f?) intersect at a com-
mon point, locatingT4=1.4], . Solid lines are guides to the eye
only.

FIG. 1. Semilog plot of windingW?) vs T/J, for L, =10, 20,
and 30, with vortex density=1/20, anisotropyl,=0.02], , and
aspect ratid_,=L, . (W?) is computed using metho@), i.e., ran-
dom connections at intersection@V?) steadily decreases as,
increases, over the entire temperature range.

neutrality condition of Eq.3) requires that wherw,>0,

. . 2 . . .
there must be an equal and opposite parallel winding of th&itting each of the curves dW*) to a cubic polynomial in

loops n'°"S. As L—c, we haveW,=0 for T<T,, and T, we compute their derivatives at the intersection pdint
Su T 1 ! _ . .
W,>0 for T>T, . Thus a transition aly should be char- = 1.43, , and plot the results s, in Fig. 3. We see that the

acterized by fluctuations in the number of field-induced linesSIOPes, to an excellent approximation, scale linearly with
and by the appearance of infinite parallel loops directed opL. . thus suggesting a critical exponent-1. On closer in-

posite to the direction of the applied magnetic field. spection, the data in Fig. 3 show a small systematic down-
wards curvature about the linear fit; however, this curvature

can be removed by assuming a slightly higher critical tem-
perature of T=1.403), . Note that this value ofv=1 is

To test the above predictions, we have simulated the 3Darger than the predicted value of 2/3.
uniformly frustratedXY model of Eq.(1) using a vortex As an alternative method to compute the critical behavior,
density f=1/20, anisotropyd,/J, =0.02, and aspect ratio we can take the scaling E@L2), expand the scaling function
L,/L, =1, forL, =10, 20, 30, 40, and 60. For these param-f(x) as a polynomial for smak, and do a nonlinear fitting to
eters, the vortex lattice melting temperaturéljs=0.24], ,  the data to determine the unknown polynomial coefficients,
and the zero-field critical temperature Tgp=1.14), . We  Tq andv. To obtain the best fit we use a fourth-order poly-
compute the transverse windiig of the field-induced lines, nomial and fit only the data from the two largest sizes,
defined by Eq(11), using both metho¢i) and methodii) to =~ =40 and 60. The results give;=1.403), andv=0.96, in
decompose each configuration into “lines” and “loops.” Ac- agreement with the earlier estimates. In Fig. 4 we show the
cording to the scaling Eq12), we expect that plots qfw?) scaling collapse that results from this polynomial fit. There
vs T for different sized_, should all intersect at the common are systematic deviations from the fitted curve on fhe
pointt=0, orT=Ty,. >Tg4 side, though these appear to decreask aBicreases.

In Fig. 1 we show a semilog plot ¢iW?) vs T/J, using
method (i) (random reconnections at intersectiprisr L ‘
=10, 20, and 30. We see that there is clearly no common 20 f=1/20
intersection point of the curves. As, increases{W?) de- J =002]
creases uniformly over the entire temperature range. This is
in qualitative agreement with earlier computations(\f?)
by one of us(see Fig. 15 of Ref. ¥ For L, =60, we have
found no net transverse winding of the field-induced lines at
all, i.e., for the length of our simulation we hatl=0, for
the temperature range 13@/J, <1.44.

Next, in Fig. 2, we show the same quantities but now 0 ‘ ‘ ‘ ‘ ‘ ‘
using methodii) (search first for maximal transverse lopps 0 10 20 30 1 40 50 60 70
for L, =10, 20, 30, 40, and 60. We see thatlasincreases, L
the curves seem to approach a common intersection point, giG. 3, winding slopesi(W2)/dT vsL, at the estimated cross-
giving Te=1.4], . Note that thisTg, is abovethe zero-field  jng temperature of Fig. Zr=1.4J, , for L, =10, 20, 30, 40, and
critical temperaturdl ;o=1.14J, . 60, with vortex densityf = 1/20, anisotropyl,=0.02J, , and aspect

From Eq.(12), we expect that the slopes of these curvesratio L,=L, . The solid line is the best linear fit to the data. The
at T should scale with system size d§W?)/dT~ Lf”. good fit suggests the critical exponent1.

B. Numerical results

—
W
T

L=L

d<W2>/dT
=

T=147J,

W
T
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FIG. 4. Scaling collapse of data of Fig. @) plotted vs[ (T FIG. 6. z axis winding(W2) vs T/J, for L, =20, 30, 40, 60,

7T<D)/‘]L:|Lj];h}l forL, =10, 20, 30, 40, and 60, with vortex density 100, and 120, with vortex densityf=1/20, anisotropy J,
f=1/20, anisotropyl,=0.02], , and aspect ratib ,=L, . Data is =0.02, , and aspect ratid,=L, /5. (W§> is computed using

fit to a polynomial expansion of Eq12), andTy=1.4027, and  method(iii), i.e., we first find all loops that percolate in the negative
v=0.96 determined from the fit. Only data frdm =40 and 60 are 5 direction. Solid lines are guides to the eye only.

used in the fit, although data from all sizes are shown in the plot.

The solid line is the fitted polynomial curve. . .
POy In an attempt to improve the analysis ON2) we have

Next we consider the excess parallel winding of the field-repeated the calculation, using a new system aspect ratio of
induced linesw,. As discussed earlier, Tasovics theory L,=L,/5. This has the effect of increasing the value at
predicts a scaling ofW?) such as that in Eq14). To deter-  which the curves of W2) intersect, hopefully improving our
mine W, we count the winding of vortex line patfg} that  accuracy. We have explicitly checked that changing the as-
wind negatively in thez direction, i.e., they have a net dis- pect ratio does not shift the transition temperatiligg ob-
placement oR,,= —m,L,, with m, a positive integerR, served in(W?) (see also Sec. IVB In Fig. 6 we show
may have any value for such pathsSince such negative results for{W?) vs T/J, for this new aspect ratio. Again we
parallel windings must be compensated for by excess fielfind no common intersection point for the sizes considered.
‘lines,” we have W,=% ,m,, . As L, increases, the intersection point continues to decrease.

However, when we have used either of our tracing methwhether this is a result of a failure of the scaling hypothesis
ods(i) or (i), we have never found any such negative paralof Eq. (14), or whether we have simply failed to reach the
lel windings up to the highest temperature we have simuscaling limit of sufficiently largel, (L,=24 is the largest
lated, T=1.6J, . This has motivated us to define a third value in Fig. 6, we cannot be certain. Note that in both Figs.
tracing scheme(iii ) we first search through all possible con- 5 gnd 6,<W§) appears to be vanishing at a temperature no-
nections to find any paths witR,,<O0. ticeably above §,=1.4], , where the curves of the trans-

In Fig. 5 we show results, using tracing schefiiie, for  yerse winding(W?), intersect.

(WZ) vs T/J, for the same system parameters and sizes as We have also tried to fit the data of Fig. 6 to the scaling
used in Fig. 2 for(W?). Note that the values ofWs) at  form (W2)~L ~*f,(tL'""), assuming a nontrivial anomalous
which the curves for different , intersect are exceedingly scaling dimensionx (although we have no specific theoreti-
small. The intersection points appear to decreaseaslL,  cal reason to propose this foynwhen we do so, we obtain
increases, however, we are not able to make any firm conf.=1.44, y=0.76, andx=1.185, however, our data in the

clusions. vicinity of this T, is too scattered for us to place much sig-
0030 ‘ ‘ ‘ o ‘ nificance on this fit.

. L -10 Having used tracing methddi) to first eliminate all pos-
00255r Lt—ZO ] sible lines percolating in the negati\iedirection, we can
000 * L, =30 ] then search for all possible transversely percolating lines and

£ o L =40 compute the resulting transverse windiiWy?). When we do
VN 0015+ L =60 ] this, we find our results fofW?) virtually unchanged from
o010k f=120 4 tracing method(ii) in the vicinity of T=1.4J, . The ex-
I, =0021 tremely low number of negative percolating lines at this
0.0051 L=L, ] temperature produces no noticeable effect on the transverse
0.000 . . tracing.
1.40 145 150 5 1S5 1.60
FIG. 5. z axis Winding(W§> vs T/J, for L, =10, 20, 30, 40, IV. PERCOLATING LOOPS

and 60, with vortex density =1/20, anisotropyd,=0.02], , and
aspect ratid_,=L, . (W?) is computed using methq(i), i.e., we
first find all loops that percolate in the negatizedirection. Solid As discussed in the preceding Section IIl.A, a transition at
lines are guides to the eye only. T would mark the appearance of infinite transverse loops,

A. Summary of Nguyen and co-workers’ method

144514-5



P. OLSSON AND S. TEITEL PHYSICAL REVIEW B57, 144514 (2003

I ‘ L2 e
| o } £=1/90 ]
! - | LO-J =0.027, 1
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FIG. 7. Percolating transverse vortex paths. Ratltloses upon 0. . . 1
itself without ever winding about the system in theirection. Path 05 06 07 08,09 12
(2) only closes upon itself after winding once in tlzedirection. *
Both paths contribute to the calculation 6f by method (il). FIG. 8. Percolation probabilitp, vsT/J, for L, =30, 60, and

Only path(1) contributes to the calculation @, by method(ii). 90, with vortex densityf =1/90 and anisotropy,=0.02], . Solid

The thin dashed lines represent the periodic boundaries of the sysymbols on the left are for aspect ratig=L, ; open symbols on

tem. the right are for aspect ratib,=L /6. O/ is computed using
method (if), following Nguyen and co-workers. Solid lines are

asT is increased. The idea to explicitly look for transversedUides to the eye only.

paths that percolate across the system was first put forth by ) ) .
Jagla and Balseir®h Later, Nguyen and co-workers®re- ~ case, our methodi) would consider this path as part of the
fined this idea. They defined a quantity which they denotedield-induced vortex lines®, contributing to the winding
Oy, that is the probability that a vortex path exists which W, rather than as a transverse loop that contributef6°.
travels completely across the system in a direction transversé/e call Nguyen and co-workers’ path tracing method)(io
to the applied magnetic field, without ever traveling com-distinguish it from our methodii). We denote byO| the
pletely across the system in the direction parallel to the fieldprobability for a percolating path using method'Yji using
If such a path exists in a given configuration, that configuramethod(ii) we denote it byO, . Paths of typg2) will con-
tion counts as unity in the average O ; if not, that con-  tribute toO| , but not toO, . We will see that there are very
figuration counts as zero. dramatic differences between these two methods, and that
Since havingW?>0 in a given configuration necessarily only O, gives self-consistent results.
implies that there is a percolating transverse loop in that
configuration, there is a close connection between the quan-
tities (W?) andO, . They differ in that(i) for a configuration
with W2>1, and hence with more than one percolating First, we note that if we use methdd (random connec-
transverse loop, the contribution @ remains unity, rather tions) to search for percolating transverse paths, the result
than increasing with the number of percolating transversavill essentially be the same as found fW?) in Sec. Il B.
loops; and(ii) in a configuration with two percolating but As L, increases, the probability of finding a percolating
oppositely oriented transverse loops, the contributio®to transverse loop steadily decreases for the entire temperature
will be unity, but these loops cancel each other in their contange, becoming immeasurably small for our biggest system
tribution to W2, which might therefore be zero. size. Hence we will focus here on methdds and (ii').
Since O, is a pure number one might expect it to be a We now consider the computation & using method
scale-invariant quantity, and hence, similarly(i?), plots  (ii’), the one used by Nguyen and co-workers, which never
of O, vs T for different system sizek, should have a com- checks the way in which the percolating transverse path
mon intersection point afly,. Nguyen and co-workers’ closes upon itself. We first use parametéys-0.02], and
method of searching for such percolating transverse paths Is,=L, , the same as those in Sec. llIB, but a more dilute
similar to our methodii) except for one crucial differenéd.  density of vortex linesf=1/90. For these parameters, the
They do not require that the transverse path close upon itselfjortex lattice melting temperature ©§,=0.49], , and the
they only require that the path start at one end of the systenxero-field critical temperature, as before, Tigp=1.14], .
say, atx=0, and continue until reaching the opposite end,These parameters are very close to the parameters of one of
x=L, , while keeping the distance traveled alantpss than the cases studied by Nguyen and co-workers in Refs. 9 and
L,, that is, the displacement traveled along the patatis- 10 [they usedf=1/90, J,=(1/49)J, , andL,~L,]. Our re-
fiesR,,=L, andR,,<L,. Since, by the periodic boundary sults forO/ vs T/J,, for three system size4, =30, 60,
conditions, all pathsnusteventually close upon themselves, and 90, are shown as the solid symbols on the left-hand side
there are two possibilities for the transverse percolating pathsf Fig. 8. These results agree quite closely with those of
that Nguyen and co-workers find. We illustrate these in FigNguyen and co-workerésee Fig. 8 of Ref. § and seem to
7: (1) the patha eventually closes upon itself without ever show what might be a common intersection of the three
traveling the lengthL,, in which caseR,,=0; or (2) the curves neaf=0.7]J, . However, we now consider the same
path «, when followed until it closes upon itself, winds up parameters and sizés , only using a different system as-
traveling the length.,, with a displacemerR,,=L,; inthis  pectratiolL,=L,/6. The results are shown as the open sym-

B. Numerical results
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FIG. 10. Percolation probabilityp, vs T/J, for L, =30, 60,
and 90 with vortex density =1/90, and anisotropy,=0.02], .

FIG. 9. Percolation probabilit9, vsT/J, for L, =10, 20, and
40, with vortex densityf =1/20 and anisotropy,=0.02], . Solid
symbols on the left are for aspect ratig=L , ; open symbols on  Solid symbols are for aspect ratio,=L, ; open symbols are for
the right are for aspect ratia,=L /2. O is computed using aspectratid,=L,/6. O is computed using methdd), where all
method (ii), following Nguyen and co-workers. Solid lines are loops close upon themselves. All curves approach a common inter-
guides to the eye only. section point,T,=1.17], , independent of the aspect ratio. Solid

lines are guides to the eye only.

bols on the right-hand side of Fig. 8. We see that there no
longer appears to be a common intersection point, but morgurves of O, vs T/J, for the different system sizek,
importantly, the curves have all shifted dramatically to =10, 20, 30, and 40 all intersect at a common poin,
higher temperatures. Thus, any valueTaf that one might =1.4J, . This is exactly the same value as found in our
try to extract fromO| depends sensitively on the system analysis ofW?) (see Fig. 2
aspect ratio. We have also considered other values of the We therefore conclude th&, gives a self-consistent de-
aspect ratid_,/L, , not shown here. The clear trend is that termination ofTy,, and that this value is considerably larger
the sharp rise inO; shifts to increasing temperatures asthan estimates consideri® . In fact, estimates of ¢, from
L,/L, decreases. But iT4 represents a true phase transi- O all lie belowthe zero-field critical temperaturg,, and
tion, it must beindependenif aspect ratio. We therefore decreasesf increaseswhile the values determined fro@®y
conclude thatO] and method (i) do not give any self- all lie above Ty, andincreaseasf increases
consistent evidence of the proposed vortex loop blowout If O is indeed a scale-invariant quantity, we can postu-
transition. late that it should obey a scaling relation similar (d/?),

The problems wittO| are even clearer if we consider the I-€-:
parameterg =1/20 andJ,=0.02], , the same ones used for
our computation ofW?) in Sec. Il B. In Fig. 9 we show our
results forL, =10, 20, and 40, for the two aspect ratiog ) ]
=L, andL,=L, /2. In both cases, there is no common in- Based on our analysis ¢#v?) in Sec. Ill B, we may expect
tersection point of the three curves for the three sizes, and the=1. In Fig. 12 we therefore show a scaling collapse of the
curves for the smaller aspect ratio are shifted to higher temdata for f=1/90 from Fig. 10, plottingO_ vs [(T
peratures. Note also that, for both aspect ratios, the tempera-
tures at whichO| rises to unity lie quite significantly below
the value ofT4=1.4], found from our analysis ofW?).

We next consider the computation©f using methodii)
(the percolating transverse path must close upon itself keep-
ing R,,=0). In Fig. 10 we show results using the same S ol
parameters as were used to compQtg in Fig. 8, i.e.,f ’
=1/90, J,=0.02], , andL, =30, 60 and 90, for the same
two aspect ratio ,=L, andL,=L /6. We see now that for
both aspect ratios, curves for the three different sizes appear
to approach a common intersection poift,=1.17, ' L A
>T.=1.14), , and that this intersection point is indepen- 1.0 L1 12 1.3 7 14 L5 1.6
dent of aspect rationote that forL,=L /6, the thinness of L
the systemL,=5, for L, =30, presumably makes it 100  FiG. 11. Percolation probabilit, vsT/J, for L, =10, 20, 40,
small to be in the scaling region, hence it intersects the othegng 60, with vortex densit§=1/20, anisotropyd,=0.02], , and
two curves at somewhat lower temperatires aspect ratid_,=L, . O, is computed using metha(), where all

In Fig. 11 we show similar results using the same paramtoops close upon themselves. All curves approach a common inter-
eters as were used in our computatior{8f) in Sec. IlIB,  section pointT,=1.4, , in agreement with the analysis Oiv2)
i.e.,, f=1/20, J,=0.02], , andL,=L, . We see that the in Fig. 2. Solid lines are guides to the eye only.

O (T,L,)=Tf(tLY). (15)

1.2— T
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FIG. 14. Percolation probabilitp, , vs T/J, for L, =10, 20,
FIG. 12. Scaling collaps®, vs[(T—Tq,)/JL]Li’” of data from 30, 40, and 60, with vortex density=1/20, anisotropyJ,
Fig. 10, for f=1/90. A reasonably good collapse is found for all =0.02], , and aspect ratib,=L, . O, is computed using tracing
sizesL, , for both aspect ratiog,/L, , using a single value of method(iii). Solid lines are guides to the eye only.
T$=1.168, andv=1. Solid lines are guides to the eye only.
for system aspect ratids,=L, andL,=L, /5, respectively.

—Ty)3,]L, , whereT,, is determined by a best fit of the data AS With (W2) shown in Figs. 5 and 6, the intersection points

to the scaling form. We find a reasonably good collapse foPf the curves for different sizes appear to decrease in tem-

all sizes, for both aspect ratios, using a single valud gf perature as, increases. Again, we cannot say whether this

~1.169, . is a failure of our scaling hypothesis or a failure to reach
In Fig. 13 we show a similar scaling collapse of the datasufficiently largeL,. Also, analogous to our findings for the

for f=1/20 from Fig. 11. Fitting the data f®, to a fourth-  Windings(W?2) and(W2), O, , appears to be vanishing at a

order polynomial expansion of the scaling function, we findtemperatureabove T,=1.4], where the curves dD, inter-

an excellent collapse, for all system sizes, using the paransect.

etersT4=1.392), and »=1.006. These results agree very

well with the values obtained from the scaling analysis of V. SPECIFIC HEAT
(W?), given in Sec. Il B. The quality of the collapse is much
better here than it was fqW?) in Fig. 4. If Ty, as determined byW?) or O, , does indeed repre-

Finally, in analogy with the Windingwg), we have also Sents a true thermodynamic transition, we would expect to
considered the probabilit, , to find a vortex path perco- S€& some signature of this transition in more conventional
lating through the system in the negatizedirection, oppo- tlhlergqgtiyrl]iiemg:ngtrf;tltliﬁst'hg]s,thgcriﬁginst ex;seg&irxlsegfifef.
site to the applied magnetic field. We exp€xt, to obey a ' P y P

scaling relation similar to that of E¢15). To computeO,, the vortex line “.q.u'd region, reminiscent Of an mverted
; L . iy mean-field transition. In their numerical simulatioh,
we have used tracing methadi) in which we explicitly

search through all possible connections to find any Sudl}\lguyen and Sudbolaimed to see an anomalous glitch in the

paths. We show our results f@,, vs T/J, for vortex den- specific heat at the temperature they identifiedTgsfrom

N . : - their calculation 0O, . However, this glitch corresponded to
sity f=1/20 and anisotropy,=0.02), in Figs. 14 and 15, only a single data point very slightly displaced above an

otherwise smooth background, and in the previous section

10F ]
L 1.0, T T
08 [ ] * L =20
] 08 o LL=30
0.6 - - s L =40
A [ i 0.6 _
o I . o L, =60
04 L ] o.-l L %0 ]
t " [ = ,
i 04 L* 100 f=1/20 A
021 ] L 1, =002 |
[ 0.2
00 I 1 1 1 I I Lz= LJ./S
4 2 0 " 4
(T-T A 1L}

0.0 L]
130 135 140 145_ 150 155 160

T/
FIG. 13. Scaling collaps®, vs[(Tqu))/JL]LfV of data from *
Fig. 11, forf=1/20. An excellent collapse is found for all sizes, FIG. 15. Percolation probabilit9, , vsT/J, for L, =20, 30, 40
using values ofT4=1.399), and »=1.006. These values agree 60, 80, and 100, with vortex density=1/20, anisotropyJ,
well with those obtained from the scaling collapse(#?). The =0.02], , and aspect ratib ,=L, /5. O, is computed using trac-
solid line is the fitted polynomial curve. ing method(iii). Solid lines are guides to the eye only.
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0.70— : . ‘ ‘ — — VI. CONCLUSIONS
f=1/20 _ _ _ o
0.681 T =002 ] We have carried out detailed Monte Carlo investigations
L=L of the 3D uniformly frustratedKY model in order to search
0.66L =t ] for a proposed “vortex loop blowout” transition within the
S vortex line liquid phase of a pure extreme type-Il supercon-
oeaf ° =10 1 ductor. Such a transition had been predicted as a result of
| ° L =20 ] general theoretical arguments by @revic’ Evidence for
06l = L =30 b such a transition was claimed in numerical simulations by
i * 1 Nguyen and co-worker&;*® and in specific-heat measure-
0.60L_ " L=40 L L L ments on high purity YBCO single crystdfsWe have made
1.36 1.38 1.40 ™ 1.42 1.44 explicit measurements of the vortex line windings?) and
L (W2), which are the key quantities in Tasovics theory. We

FIG. 16. Specific hea€ vs T/J, for vortex densityf =1/20, have regxamined Nguyen and co-workers’ calculation of the
anisotropyJd,=0.02), , and aspect ratib, =L, , for system sizes Percolation probabilityO, . . 3
L, =10, 20, 30, and 40. No hint of any anomaly is found near the ~OUr results raise several questions concerningi@scs
previously determined@,=1.4], . The solid line is a guide to the theory. We have found that the values (?) and (W?)
eye only. depend sensitively on the precise scheme one uses to trace

vortex line paths. For the natural choice of random connec-

we have demonstrated th@ significantly underestimates tivity at vortex line intersections, botW?) and (W?2) ap-
T4, hence there is no reason to expect any anomaly &  pear to vanish at all temperatureslas-«~. Only when we
that temperature. specifically search first for percolating paths, when comput-

In this section we report on high-precision measurementing the windings, do we find that the windings converge to
of the specific heat, for the same parameters we have stud-nonzero values above a certain temperature. In this case, we
ied in the earlier sections. Ifg,, as found using the vortex find that the transverse windingV?) obeys the finite-size
path tracing methodii), is indeed a true thermodynamic scaling form expected from Tasovics theory, however, the
phase transition with critical exponent=1 (as our scaling critical exponent we find ig’=1, rather than the predicted
analyses found then hyperscaling would suggest a specific- vy~ 2/3 of the inverted 3DXY transition. For the longitu-
heat exponent ofr=2—dv=—1. We thus do not expect to dinal winding (W?) we have been unable to find the ex-
see a diverging, however, some feature should be presentpected scaling form. Whether this is beca(i#é) does not

In Fig. 16 we plotC vs T/J, , in the vicinity nearTq  scale, or because our systems are all too small to be in the
=1.4], , for the same parametefs-1/20,J,=0.02], , and  scaling limit, we cannot be certain. It does appear that, upon
L,=L, as used in Figs. 2, 11, and 13. We show results fogqoling, (W?) vanishes at a temperature above that at which
L, =10, 20, 30, and 40, using-310x10’ Monte Carlo (w2} vanishes. This would be contrary to Be®vics theory.

passes through the lattice, depending on the system size. Weyever, since we have not succeeded in finding scaling for
find no noticeable finite-size dependence, and no hint of an¥W2> we cannot be certain of knowing exactly where it
feature at all, near the previously determineg=1.4J, . var?ishes ag oo

In Fig. 17 we plotC vs T/J, , over a broad temperature | genendent of Temovics theory, it is natural to think
range, for the same parametdrs 1/90 andJ,=0.02], as  hat as temperature and hence vorticity increase, the vortex
used in Figs. 10 and 12, but for a smgle large system sizgag may form percolating path@ote, however, that the
L, =30 andL,=90. Again we see no hint of any anomaly gjrectedness of the vortex line segments and the condition of
near the previously determinéid,=1.168J, . divergenceless paths means that this is no ordinary percola-
tion problem. We have therefore, following Nguyen and co-

Ly peve. workers, searched explicitly for such percolating paths in the
L1 direction transverse to the applied magnetic field, as well as
1.0f in the direction parallel but opposite to the applied magnetic
o0of field. Defining transverse percolation as the existence of a
i vortex line path that extends entirely across the system in the
0.8 oo . D .
S direction transverse to the applied magnetic figithout si-
07 multaneously extending entirely across the system in the par-
0.6 allel direction, we have shown that Nguyen and co-workers’
0.5F E procedure, which ignores the transverse periodic boundary
, ‘ , , conditions and does not require the percolating path to close
0.80 1.00 120 gy 140 1.60 upon itself, leads to inconsistent predictions for the transition

temperature as one varies the system aspect ratio. Only by
FIG. 17. Specific hea€ vs T/J, for vortex densityf=1/90,  requiring that the transverse percolating path close upon it-
anisotropyJ,=0.02], , and aspect ratib,=3L, , for system size  self, without ever winding in the parallel direction, do we
L, =30. No hint of any anomaly is found near the previously de-find a consistent transition temperature independent of aspect
terminedT4,=1.168), . The solid line is a guide to the eye only. ratio. The percolation transition found this way agrees both
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in critical temperaturel 4, and exponent with the results no feature whatsoever near the percolation transifign nor
from our analysis of the transverse winditig/%). We have do we find any finite-size effect. In particular we see no
also computed the probability of finding a percolating path inevidence for a steplike feature as was observed experimen-
the direction parallel but opposite to the applied magnetidally in YBCO. . .
field. Here, analogous to our results fa%?), this negativez To conclude, we have found evidence for a well-defined
percolation appears to occur at a temperature higher than thgi':msverse percolation temperature within the vortex line I|'q-
of the transverse percolation, however, we have not su uid phase o_fa mod_e_l type-Ii supergonductor. The connection
ceeded in finding a clear scaling of this parallel percolatiorP€!Ween this transition and Taovics theory of a vortex
probability. oop “blowout” transition remains unglear. It a_l;o remains
Note that the transverse percolation transition temperatur\emCIear whether or not th|s per_colatu_)n transition has any
Te(f) that we findincreasesabove the zero-field transition observable thermodynamic manifestation.
temperatureT,, as the magnetic-flux densitl increases
This is in striking contrast to the conclusion of Nguyen and
co-workers who proposetly(f) to decreasebelow T, asf We would like to thank Professor Z. Tasovicand Pro-
increases fessor A. Sudibdor many helpful conversations. This work
While our results do seem consistent with a well-definedwas supported by the Engineering Research Program of the
transverse percolation transition, one can ask if this is @ffice of Basic Energy Sciences at the Department of En-
purely geometrical feature of the vortex line paths, orergy, Grant No. DE-FG02-89ER14017, the Swedish Natural
whether it also corresponds to a true thermodynamic phas@cience Research Council Contract No. E 5106-1643/1999,
transition, i.e., something one could detect in a suitable therand by the resources of the Swedish High Performance Com-
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