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We use the three dimensional uniformly frustratéd model as a model for a high temperature
superconductor in an applied magnetic field and explicitly measure the longitudinal correlation length
&, in the vortex line liquid phase. We determine the scalingéofwith magnetic field and system
anisotropy close to the vortex lattice melting transition. We apply our results to determine the extent
of longitudinal correlations in YBCO just above melting. [S0031-9007(99)08645-7]

PACS numbers: 74.60.Ge, 64.60.—i, 74.76.—w

It is now generally accepted that thermal fluctuations inthat thermally excited vortex loops, which become impor-
the highT. superconductors lead, for a clean sample in theéant at low magnetic fields, can be described by an effective
mixed state, to a first order melting of the vortex line latticerenormalization of the interaction between field induced
into a vortex line liquid. The properties of this vortex line vortex lines, and we find no evidence for a recently pro-
liquid have been the subject of considerable investigatiorposed transition within the vortex line liquid phase [13,14].
An early theory by Feigel'man and coworkers [1] pro- Our model is the uniformly frustrated 3®Y model
posed that longitudinal (parallel to the applied fi&ljisu-  [15], given by the Hamiltonian
perconducting coherence could still persist above melting. _

Flux transformer experiments in heavitwinned YBCO HUoH = - lzj“ codfi = Oivp = Ain), (1)
single crystals [2] suggested support for this conclusion, as ) * ) . )

did early numerical simulations [3,4] of the frustrated threeVhere the sum is over the sitesf a cubic grid of points
dimensional (3D)XY model. However, more recent ex- With unit basis vectorg = %,53,2. 6, is the phase angle
periments onuntwinned YBCO single crystals by Lépez ©f the supeigonductlng wave function on sit@ndA;, =

et al. [5] found longitudinal coherence to vanish simulta- 27/¢o) [;"* A - dlis the integral of the magnetic vector
neous|y with me|ting, as have recent, more extensj‘ﬂé' pOthti&' on the specified bond. The unit of the grld spac-
simulations by Huet al. and by Nguyen and Sudbg [6]. ing alongz is taken asi, the spacing between the weakly
However, it remains an important open question just howoupled CuO planes; the unit of the grid spacing in.the
large the finite longitudinal correlations can become jusPlane is taken ag o, the bare vortex core size in the plane.
above melting. Simulations by Nordborg and Blatter [7] The Hamiltonian (1) results from making the London ap-
within the “two dimensional (2D) boson” approximation, Proximation to the discretized Ginzburg-Landau energy,
as well as general theoretical considerations [8], predict &1d assuming\/a, — < so that the internal magnetic
correlation length¢, ~ y~'a,, wherey = A./A, is the field B can be taken as frozen and equal to the uniform
anisotropy ratio and, = /¢0/B is the average Spacing applied fieldH. For a uniaxial anisotropic system with
between vortex lines. However, analyses of experiment&€ak direction along, the couplings are/,, = J, =

on untwinned single crystal YBCO by Right al. [9] and $5d/(1673A7) andJ, = ¢¢é10/(167322d), whereA |

by Moore [10] have suggested that longitudinal correla-and A, are the penetration lengths in the respective direc-

tions may be of the surprisingly larger micron scale. tions. The anisotropy is given by the parameter

To investigate this issue, we carry out extensive new 7 L d d
simulations of the frustrated 3®Y model for different n = \/T =2 —=y—, 2
values of applied flux density and anisotropyn, ex- J: AL €10 £10

plicitly measuring the longitudinal correlation lengthas and the magnetic field is taken uniform alofgwith a
determined by several different criteria. We find a gooddensity of flux quanta per plaquette of the grid,
scaling of¢, with f andx in the continuum limit, allowing 0 o 2

us to estimate, (7.) in real YBCO single crystal samples. f=BElo/do = (ro/av)” (3)
We find that longitudinal correlations at melting are en-f and n are the two dimensionless parameters of our
hanced with respect to the 2D boson approximation, buinodel. A more complete derivation of Eq. (1), and jus-
not dramatically so. We also address several additionalfication for its use in modeling higlf. materials, is
guestions. We show, contrary to recent claims [11], thagiven in Ref. [4]. Its advantage over the “2D boson” ap-
there is only a single transition even in the isotropic modelproximation is in its more realistic vortex line interaction,
In the very anisotropic limi§, (T.) < d, where acrossover and in that it allows for the production of thermally acti-
to 2D behavior has been predicted [8,12], we find no qualivated vortex ring excitations, which may be important at
tative differences from the less anisotropic cases. We findmall f.
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To determine the relevant transitions in the model, wenot betoo large, in order that we are still able to cool
simulate Eg. (1) with periodic boundary conditions [16], into the vortex lattice state without getting trapped in a
measuring the standard quantities [17]: (i) the helicitysupercooled liquid. For such a value bf, we carefully
moduli parallel and perpendicular to the fiel, and  monitor the time sequence &fS and determind’. as the
Y ,, which measure phase coherence, andAi§YK) =  temperature at which the system seems to be switching
S(K) — S(R.[K]), whereS(k , ) is the average intraplanar equally between vortex lattice and vortex liquid states. To
vortex structure functionK is a reciprocal lattice vector accurately measure correlation lengths, we then repeat the
of the ordered vortex lattice, ankl, reflectsK through  simulations with a larger value df, > &,(T.), cooling
the x axis; the difference is used so tha vanishes in down to the predeterminefi..
the liquid, and we averagAS over the three smallest In Fig. 2 we show results fo€,, &,;, and ¢y, vs T,
nonzero values dK. Our simulations at temperatures nearfor the case off = 1/20, »? =9, with L, = 40 and
the transition, for a lattice of sizé, X L, X L., consist L, = 128 (for T = 0.8, L, = 64). We also show the
typically of L3 L, Monte Carlo passes through the entirespecific heatC, as computed from energy fluctuations.
lattice for equilibration [18], followed by2 X 10°-107  The peak inC at “T.,” is identified as the crossover

passes for computing averages. where, upon cooling, local superconducting order first
An example of our results is shown in Fig. 1 below for develops [4].
the case of isotropic couplings = 1, andf = 1/20, for We see that all three lengths increase similarly as one

L, = 40 and several different sizds,. If we denote the cools towards.. No noticeable feature is seen ndas.
loss of longitudinal coherence, wheX¥e vanishes, ag., &, is slightly larger thané,, by a factor of aboutl.3.
and the melting of the vortex lattice, whefes vanishes, The numerical factor of Eq. (6) is found to be= 74. In
asT,,, then only for the largedt, do we clearly observe a determiningé, and &, from Egs. (4) and (5), we fit our
single transition withl’,, = T. [19]. The strongest finite data self-consistently within the range < z < L,/3,
size effectis théncreasen T,, asL, increases. Ourresults averaging over the position, . In determiningéy,, we
explain recent simulations by Ryu and Stroud [11] which fit Eg. (6) to the two smallest nonzero valueskqf, since
using smaller systems, continued to sugdest< 7. for  we found thatY,(k ) quickly saturated to a constant as
the isotropic model. Note thaf, vanishes well below k&, increased. This unfortunately limits the accuracy with
T., indicating that the vortex lattice has depinned from ourwhich we can determinéy,. Some examples of our fits
numerical grid well below its melting. for ¢, andéy, are shown in Fig. 3 below. Inthe remainder

We next measure the longitudinal correlation lengthsof this work we now focus on the phase correlation
in the vortex line liquid, T, < T, as determined three length¢..

different ways. The phase angle correlation length In Fig. 4 we show our results fof, vs T, for several
and the vortex correlation lengthy,, are defined by the different values of the parametefsand 5.
correlation functions, We can now argue as follows for the dependencé,of

0, 2)—00,.0 /€. on f andn. For small values of, such thatt, ¢ < ay,
Cle) = (MmOl — 72/ T < T, (4) we expect that¢, should be independent of the vortex

Co(z) =(n,(r,, 2)n.(r,,0) ~ e /b, T. <T. core s_izegm. From Egs. (2) _and (3) we see that the only

) ' combination off andn that is independent af ¢ is £ 5>.
(5)  Furthermore, for largé. we expect our discretizing grid to

Heren,(r,,z) = %[D X DO] - % is the vorticity in the ~Pecome a reasonable approximation of the continuum and
xy plane at transverse positian. and heightz (D is
the lattice difference operator). We work in a gauge o717 T 1T
for which A;; = 0. Our third length is determined by L, =40 ©°L,=32

considering the wave vector dependent helicity modulus _ o8t AL, =64
Y. (k . ), which gives the linear response in supercurrent to oL, = 128!
a perturbation in vector potentidl (k ;) [20]. InD = 3, f=1/20-
dimensional analysis gives, ~ 1/length. In the vortex n=1 1

liquid, provided one is not near any critical point where
anomalous dimensions might come into play [21](k ;)
must vanish ag? ask, — 0. We therefore define the

Y,, Y, AS(K)
s o
~ =)}

0.2
helicity correlation length¥y, by I
Y.(ky) = céy ki, T.<T, 6 0.0t
_ o(ku) = céy. + ¢ ’ _(_) 04 06 08 10 12 14 16 18
wherec is a constant numerical factor, which we fix in an 7,

athocmar;]ner by requ;]rlngfyz N % atg - 1f2 t f IIFIG. 1. Helicity moduli Y, Y., and vortex structure order
Or each case we have considered, we Tirst carelully,ametera S(K) vs 7, for f = 1/20 and isotropic couplings
chooseL, sufficiently large so as to observe a single; = 1, at system size, = 40 and L, = 32, 64, and 128.

sharp first order melting transition; howevdt, must Solid lines are guides to the eye.
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so £, should be independent of the layer spacihg We Our result above may be compared with that of recent
therefore expect that the dimensionl€sgd should scale “2D boson” simulations of Nordborg and Blatter [7], which
asl/d, and so we concludé./d ~ 1/\/fn2. InFig. 5 vyieldedé¢, (T,) = 1.7y 'a,. If we take from Fig. 2 that
below we replot the results of Fig. 4 &&./d)\/fn? vs  &.(T.) = 1.3&,.(T.), then the more realistic vortex line
T/T.. We see that a§ — T., most of the data collapse interaction of theXY model gives roughly &.5 fold
to a single curve. Deviations from this curve represenincrease iné.(7.) over the boson model. This remains,
situations when eitheg,/d is small ~O(1), or when however, well below the micron scale.
T is sufficiently large (approaching@,;) that thermally Except for the casg = 1/100, our numerical results are
excited vortex rings start to dominate the total vorticity all in the limit of sufficiently largef, such thatT.( f, n)
of the system. In the first case, the discreteness of odies well below the zero field critical poirit.(0, n). For
grid spacingd clearly becomes an important length scale.these cases, therefore, thermally excited vortex rings are
In the second case, as the density of thermal rings igot playing any significant role at our melting transitions.
determined by the vortex core energy, and hence by th®ne way to see this is to note that for these cases,
core sizesd and £, again the discreteness of our grid the melting temperature®.( f,n) obey quite well the
becomes evident. Such deviations thus occur for all caseaxpectation of the Lindemann criterion (which ignores
at sufficiently high7, and also for the casg = 1/32, thermalrings)7./J, « 1/y/fn?[4]. To see this, note our
n? = 1250 at all 7. This latter case was specifically result above that,(T.)/d « 1//fn?2, and hence, if the
chosen so that, according to continuum expressions, orlendemann criterion holds, we expédét. (T.)/d]1/[T./J 1]
would expecté,(T.) < d and so to be in the so-called to be a constant. In Fig. 4 we see that the loci of points
“2D" limit of very weakly coupled layers [8,12]. We ([&.(T.)/d],[T./J.]) do indeed lie on quite close to a
see that for this casé,(T.)/d lies below the other data, straight line intersecting the origin.
indicating an even smaller correlation length than one The casef = 1/100, however, clearly lies off this line.
would expect in a continuum. However, we otherwiseThis is as expected: gsdecreases arifl.( f, i) increases,
found no anomalous behavior for this case: there remainegne eventually enters the critical region of thie= 0
only a single transition where longitudinal coherence andransition, where thermally excited rings play a significant
vortex lattice order vanished simultaneously. role in renormalizing the effective interactions between
Except for the “2D” case discussed above, our othethe magnetic field induced vortex lines, and suppress
data, when appropriately scaled as in Fig. 5, all coincidéhe melting transition below the value predicted by the
at 7.. We therefore conclude that, for these cases, outbare” Lindemann criterion, so that lim_,7.(f, n) =
model is well approximating continuum behavior. FromT,(0, ). In this case, our argument th&t(T.) should be
the specific numerical value 6f,/d)/fn%atT.inFig. 5 independent ot , becomes less obvious. Nevertheless,
we can therefore conclude that in a uniaxial anisotropiave see in Fig. 5 that the data fgr= 1/100 agree quite

superconductor in the “3D” continuum limit, well with our scaling assumption in the near vicinityTf.
5 . We therefore conclude that the main effect of the thermally
EA(T.) = 5.5d/\[fn* =55y ay, (7)  excited rings at melting is indeed adequately described

where the second equality follows from Egs. (2) andPy @ renormalization of vortex line couplings [22], and

(3), with y = A./A, the anisotropy, and, the average SO OUr rgsult of Eq. (7) .Wi|| contin.ue to hold in'the' low
spacing between vortex lines. Applying this result tofield region, although with a possible renormalization of
YBCO, for which y ~ 7, we conclude that,(7,) = tN€ anisotropy parameter.

0.86ay, or &, = 0.023u for a field of B = H = 4T.
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FIG. 2. Phase, vortex, and helicity correlation lengtls, FIG. 3. (a) Phase correlatiod(z) vs z, and (b) helicity
&, and &y, vs T for f = 1/20 andn? = 9, for system size Y.(k,) vs k,, for several different values of" for the

L, =40 and L, = 128. Also shown is the specific hedt. parameters of Fig. 2. The solid lines are fits to Egs. (4) and
Solid lines are guides to the eye. (6) that determing, and &y, .

2185



VOLUME 82, NUMBER 10 PHYSICAL REVIEW LETTERS 8 MRcH 1999

O———m———— 77— T [
e £=1/100, =1 * ] E * £=1/100, ;=1 ]
IS0F & =10, =1 ] < OF o f=1720, =1 7
un ) , 4 = * o f=1/20, =9 1
a0l o =1/20, 72=9 o ] “:,5; §° x f=1/12, =9
B0 X f=1/12, 7?=9 ] b o £=1/20, 72=40
4 ~~ . 4
§ 30F o £=1/20, 72=40 o T 4f 28 g o & f=1/32, 7?=1250
] N[ [ & ]
g | f=1/32, 3°=1250 ® NS ®e ®
E © b L X ]
-5 20 o 3¢ .
< 2 [ X
i) ? ] [ o Ox
210 . o . 2f %axo ]
o AP ] F o O
Q E F O
Om.%‘%DED“u..H|..H' 1'....\..‘.\.‘..\..‘.\?...\..‘.\....'
0.0 0.5 1.0 15 2.0 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
/7, /T

FIG. 4. Phase correlation length vs T for parameter values FIG. 5. Data of Fig. 4 replotted &€, /d)\/fn2 vs T/T..
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