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Correlation Lengths in the Vortex Line Liquid of a High- Tc Superconductor
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We use the three dimensional uniformly frustratedXY model as a model for a high temperature
superconductor in an applied magnetic field and explicitly measure the longitudinal correlation len
jz in the vortex line liquid phase. We determine the scaling ofjz with magnetic field and system
anisotropy close to the vortex lattice melting transition. We apply our results to determine the ex
of longitudinal correlations in YBCO just above melting. [S0031-9007(99)08645-7]
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It is now generally accepted that thermal fluctuations
the highTc superconductors lead, for a clean sample in th
mixed state, to a first order melting of the vortex line lattic
into a vortex line liquid. The properties of this vortex line
liquid have been the subject of considerable investigatio
An early theory by Feigel’man and coworkers [1] pro
posed that longitudinal (parallel to the applied fieldH) su-
perconducting coherence could still persist above meltin
Flux transformer experiments in heavilytwinnedYBCO
single crystals [2] suggested support for this conclusion,
did early numerical simulations [3,4] of the frustrated thre
dimensional (3D)XY model. However, more recent ex-
periments onuntwinned YBCO single crystals by López
et al. [5] found longitudinal coherence to vanish simulta
neously with melting, as have recent, more extensive,XY
simulations by Huet al. and by Nguyen and Sudbø [6].
However, it remains an important open question just ho
large the finite longitudinal correlations can become ju
above melting. Simulations by Nordborg and Blatter [7
within the “two dimensional (2D) boson” approximation
as well as general theoretical considerations [8], predic
correlation lengthjz , g21av , whereg ; lzyl' is the
anisotropy ratio andav ­

p
f0yB is the average spacing

between vortex lines. However, analyses of experimen
on untwinned single crystal YBCO by Righiet al. [9] and
by Moore [10] have suggested that longitudinal correla
tions may be of the surprisingly larger micron scale.

To investigate this issue, we carry out extensive ne
simulations of the frustrated 3DXY model for different
values of applied flux densityf and anisotropyh, ex-
plicitly measuring the longitudinal correlation lengthjz as
determined by several different criteria. We find a goo
scaling ofjz with f andh in the continuum limit, allowing
us to estimatejzsTcd in real YBCO single crystal samples.
We find that longitudinal correlations at melting are en
hanced with respect to the 2D boson approximation, b
not dramatically so. We also address several addition
questions. We show, contrary to recent claims [11], th
there is only a single transition even in the isotropic mode
In the very anisotropic limitjzsTcd , d, where a crossover
to 2D behavior has been predicted [8,12], we find no qua
tative differences from the less anisotropic cases. We fi
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that thermally excited vortex loops, which become impo
tant at low magnetic fields, can be described by an effect
renormalization of the interaction between field induc
vortex lines, and we find no evidence for a recently pr
posed transition within the vortex line liquid phase [13,14

Our model is the uniformly frustrated 3DXY model
[15], given by the Hamiltonian

H fhuijg ­ 2
X
i,m̂

Jm cossui 2 ui1m̂ 2 Aimd , (1)

where the sum is over the sitesi of a cubic grid of points
with unit basis vectorŝm ­ x̂, ŷ, ẑ. ui is the phase angle
of the superconducting wave function on sitei, andAim ­
s2pyf0d

Ri1m̂

i A ? dl is the integral of the magnetic vecto
potential on the specified bond. The unit of the grid spa
ing alongẑ is taken asd, the spacing between the weakl
coupled CuO planes; the unit of the grid spacing in thexy
plane is taken asj'0, the bare vortex core size in the plan
The Hamiltonian (1) results from making the London a
proximation to the discretized Ginzburg-Landau energ
and assuminglyav °! ` so that the internal magnetic
field B can be taken as frozen and equal to the unifo
applied fieldH. For a uniaxial anisotropic system with
weak direction alonĝz, the couplings areJx,y ; J' ­
f

2
0dys16p3l

2
'd and Jz ­ f

2
0j

2
'0ys16p3l2

zdd, wherel'

andlz are the penetration lengths in the respective dir
tions. The anisotropy is given by the parameter

h ;

s
J'

Jz
­

lz

l'

d
j'0

; g
d

j'0
, (2)

and the magnetic field is taken uniform alongẑ, with a
density of flux quanta per plaquette of the grid,

f ; Bj2
'0yf0 ­ sj'0yav d2. (3)

f and h are the two dimensionless parameters of o
model. A more complete derivation of Eq. (1), and ju
tification for its use in modeling highTc materials, is
given in Ref. [4]. Its advantage over the “2D boson” a
proximation is in its more realistic vortex line interaction
and in that it allows for the production of thermally act
vated vortex ring excitations, which may be important
smallf.
© 1999 The American Physical Society 2183
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To determine the relevant transitions in the model, w
simulate Eq. (1) with periodic boundary conditions [16
measuring the standard quantities [17]: (i) the helici
moduli parallel and perpendicular to the field,Yz and
Y', which measure phase coherence, and (ii)DSsKd ­
SsKd 2 SsRxfKgd, whereSsk'd is the average intraplanar
vortex structure function,K is a reciprocal lattice vector
of the ordered vortex lattice, andRx reflectsK through
the x axis; the difference is used so thatDS vanishes in
the liquid, and we averageDS over the three smallest
nonzero values ofK. Our simulations at temperatures nea
the transition, for a lattice of sizeL' 3 L' 3 Lz , consist
typically of L2

'Lz Monte Carlo passes through the entir
lattice for equilibration [18], followed by2 3 106 107

passes for computing averages.
An example of our results is shown in Fig. 1 below fo

the case of isotropic couplingsh ­ 1, andf ­ 1y20, for
L' ­ 40 and several different sizesLz . If we denote the
loss of longitudinal coherence, whereYz vanishes, asTc,
and the melting of the vortex lattice, whereDS vanishes,
asTm, then only for the largestLz do we clearly observe a
single transition withTm ­ Tc [19]. The strongest finite
size effect is theincreasein Tm asLz increases. Our results
explain recent simulations by Ryu and Stroud [11] whic
using smaller systems, continued to suggestTm , Tc for
the isotropic model. Note thatY' vanishes well below
Tc, indicating that the vortex lattice has depinned from o
numerical grid well below its melting.

We next measure the longitudinal correlation length
in the vortex line liquid,Tc , T , as determined three
different ways. The phase angle correlation lengthjz

and the vortex correlation lengthjvz are defined by the
correlation functions,

Cszd ; keifusr',zd2usr',0dgl , e2zyjz , Tc , T , (4)

Cv szd ;knzsr', zdnzsr', 0dl , e2zyjvz , Tc , T .

(5)

Here nzsr', zd ­
1

2p fD 3 Dug ? ẑ is the vorticity in the
xy plane at transverse positionr' and heightz (D is
the lattice difference operator). We work in a gaug
for which Aiz ­ 0. Our third length is determined by
considering the wave vector dependent helicity modul
Yzsk'd, which gives the linear response in supercurrent
a perturbation in vector potentialAzsk'd [20]. In D ­ 3,
dimensional analysis givesYz , 1ylength. In the vortex
liquid, provided one is not near any critical point wher
anomalous dimensions might come into play [21],Yzsk'd
must vanish ask2

' ask' °! 0. We therefore define the
helicity correlation lengthjYz by

Yzsk'd ; cjYz k
2
', Tc , T , (6)

wherec is a constant numerical factor, which we fix in a
ad hocmanner by requiringjYz ­ jz at T ­ 1.2.

For each case we have considered, we first carefu
chooseLz sufficiently large so as to observe a singl
sharp first order melting transition; however,Lz must
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not be too large, in order that we are still able to coo
into the vortex lattice state without getting trapped in
supercooled liquid. For such a value ofLz , we carefully
monitor the time sequence ofDS and determineTc as the
temperature at which the system seems to be switch
equally between vortex lattice and vortex liquid states. T
accurately measure correlation lengths, we then repeat
simulations with a larger value ofLz ¿ jzsTcd, cooling
down to the predeterminedTc.

In Fig. 2 we show results forjz , jvz, and jYz vs T ,
for the case off ­ 1y20, h2 ­ 9, with L' ­ 40 and
Lz ­ 128 (for T $ 0.8, Lz ­ 64). We also show the
specific heatC, as computed from energy fluctuations
The peak inC at “Tc2” is identified as the crossover
where, upon cooling, local superconducting order fir
develops [4].

We see that all three lengths increase similarly as o
cools towardsTc. No noticeable feature is seen nearTc2.
jz is slightly larger thanjvz by a factor of about1.3.
The numerical factor of Eq. (6) is found to bec ­ 74. In
determiningjz andjvz from Eqs. (4) and (5), we fit our
data self-consistently within the rangejz , z , Lzy3,
averaging over the positionr'. In determiningjYz, we
fit Eq. (6) to the two smallest nonzero values ofk', since
we found thatYzsk'd quickly saturated to a constant a
k' increased. This unfortunately limits the accuracy wi
which we can determinejYz. Some examples of our fits
for jz andjYz are shown in Fig. 3 below. In the remainde
of this work we now focus on the phase correlatio
lengthjz .

In Fig. 4 we show our results forjz vs T , for several
different values of the parametersf andh.

We can now argue as follows for the dependence ofjz

on f andh. For small values off, such thatj'0 ø av ,
we expect thatjz should be independent of the vorte
core sizej'0. From Eqs. (2) and (3) we see that the on
combination off andh that is independent ofj'0 is fh2.
Furthermore, for largejz we expect our discretizing grid to
become a reasonable approximation of the continuum a

FIG. 1. Helicity moduli Y', Yz , and vortex structure order
parameterDSsKd vs T , for f ­ 1y20 and isotropic couplings
h ­ 1, at system sizesL' ­ 40 and Lz ­ 32, 64, and 128.
Solid lines are guides to the eye.
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so jz should be independent of the layer spacingd. We
therefore expect that the dimensionlessjzyd should scale
as1yd, and so we concludejzyd , 1y

p
fh2. In Fig. 5

below we replot the results of Fig. 4 assjzydd
p

fh2 vs
TyTc. We see that asT °! Tc, most of the data collapse
to a single curve. Deviations from this curve represe
situations when eitherjzyd is small ,Os1d, or when
T is sufficiently large (approachingTc2) that thermally
excited vortex rings start to dominate the total vorticit
of the system. In the first case, the discreteness of o
grid spacingd clearly becomes an important length scale
In the second case, as the density of thermal rings
determined by the vortex core energy, and hence by t
core sizesd and j'0, again the discreteness of our grid
becomes evident. Such deviations thus occur for all cas
at sufficiently highT , and also for the casef ­ 1y32,
h2 ­ 1250 at all T . This latter case was specifically
chosen so that, according to continuum expressions, o
would expectjzsTcd , d and so to be in the so-called
“2D” limit of very weakly coupled layers [8,12]. We
see that for this casejzsTcdyd lies below the other data,
indicating an even smaller correlation length than on
would expect in a continuum. However, we otherwis
found no anomalous behavior for this case: there remain
only a single transition where longitudinal coherence an
vortex lattice order vanished simultaneously.

Except for the “2D” case discussed above, our oth
data, when appropriately scaled as in Fig. 5, all coincid
at Tc. We therefore conclude that, for these cases, o
model is well approximating continuum behavior. From
the specific numerical value ofsjzydd

p
fh2 atTc in Fig. 5

we can therefore conclude that in a uniaxial anisotrop
superconductor in the “3D” continuum limit,

jzsTcd . 5.5dy
q

fh2 ­ 5.5g21av , (7)

where the second equality follows from Eqs. (2) an
(3), with g ; lzyl' the anisotropy, andav the average
spacing between vortex lines. Applying this result t
YBCO, for which g , 7, we conclude thatjzsTcd .
0.86av , or jz . 0.023m for a field ofB . H ­ 4T.

FIG. 2. Phase, vortex, and helicity correlation lengths,jz ,
jvz , and jYz vs T for f ­ 1y20 and h2 ­ 9, for system size
L' ­ 40 and Lz ­ 128. Also shown is the specific heatC.
Solid lines are guides to the eye.
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Our result above may be compared with that of rece
“2D boson” simulations of Nordborg and Blatter [7], which
yieldedjvzsTcd ­ 1.7g21av . If we take from Fig. 2 that
jzsTcd . 1.3jvzsTcd, then the more realistic vortex line
interaction of theXY model gives roughly a2.5 fold
increase injzsTcd over the boson model. This remains
however, well below the micron scale.

Except for the casef ­ 1y100, our numerical results are
all in the limit of sufficiently largef, such thatTcs f, hd
lies well below the zero field critical pointTcs0, hd. For
these cases, therefore, thermally excited vortex rings
not playing any significant role at our melting transitions
One way to see this is to note that for these cas
the melting temperaturesTcs f, hd obey quite well the
expectation of the Lindemann criterion (which ignore
thermal rings),TcyJ' ~ 1y

p
fh2 [4]. To see this, note our

result above thatjzsTcdyd ~ 1y
p

fh2, and hence, if the
Lindemann criterion holds, we expectfjzsTcdydgyfTcyJ'g
to be a constant. In Fig. 4 we see that the loci of poin
sfjzsTcdydg, fTcyJ'gd do indeed lie on quite close to a
straight line intersecting the origin.

The casef ­ 1y100, however, clearly lies off this line.
This is as expected: asf decreases andTcs f, hd increases,
one eventually enters the critical region of thef ­ 0
transition, where thermally excited rings play a significa
role in renormalizing the effective interactions betwee
the magnetic field induced vortex lines, and suppre
the melting transition below the value predicted by th
“bare” Lindemann criterion, so that limf°!0 Tcs f, hd ­
Tcs0, hd. In this case, our argument thatjzsTcd should be
independent ofj'0 becomes less obvious. Nevertheles
we see in Fig. 5 that the data forf ­ 1y100 agree quite
well with our scaling assumption in the near vicinity ofTc.
We therefore conclude that the main effect of the therma
excited rings at melting is indeed adequately describ
by a renormalization of vortex line couplings [22], an
so our result of Eq. (7) will continue to hold in the low
field region, although with a possible renormalization o
the anisotropy parameterg.

FIG. 3. (a) Phase correlationCszd vs z, and (b) helicity
Yzsk'd vs k', for several different values ofT for the
parameters of Fig. 2. The solid lines are fits to Eqs. (4) a
(6) that determinejz andjYz .
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FIG. 4. Phase correlation lengthjz vs T for parameter values
f ­ 1y20 and h2 ­ 1, 9, and 40 (system sizes areL' ­ 40
andLz ­ 192, 128, and32 respectively);f ­ 1y12 andh2 ­
9 (system size isL' ­ 24 andLz ­ 64); f ­ 1y32 andh2 ­
1250 (system size isL' ­ 64 and Lz ­ 8); and f ­ 1y100
andh2 ­ 1 (system size isL' ­ 100 andLz ­ 256).

Recently, Těsanović [13] has argued that there may
still be a singular vortex ring blowup transition at low
fields, within the normal vortex line liquid. RecentXY
simulations by Nguyen and Sudbø [14] have claimed
identify this transition in terms of a sharp percolatio
transition of transverse vortex paths, which takes place
the vicinity of the peak in the specific heat. They find tha
within the XY model, this percolation transition is more
clearly distinct from the melting transition atlarger rather
thansmallerfields. One of Těsanović’s predictions is that
the lengthjYz will have a discontinuous decrease at thi
transition. This prediction has been one of our motivation
in computingjYz. In Fig. 2 we find no clear evidence
for such behavior injYz. It therefore remains unclear, if
such a percolation or ring blowup transition does exist
whether it has any noticeable effect on thermodynamica
measurable quantities.
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