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We carry out numerical simulations to study transport behavior about the jamming transition of a
model granular material in two dimensions at zero temperature. Shear viscosity 7 is computed as a
function of particle volume density p and applied shear stress o, for diffusively moving particles with a
soft core interaction. We find an excellent scaling collapse of our data as a function of the scaling variable
o/lp. — p|®, where p. is the critical density at o = 0 (‘““point J*), and A is the crossover scaling critical
exponent. We define a correlation length ¢ from velocity correlations in the driven steady state and show
that it diverges at point J. Our results support the assertion that jamming is a true second-order critical

phenomenon.
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In granular materials, or other spatially disordered sys-
tems such as colloidal glasses, gels, and foams, in which
thermal fluctuations are believed to be negligible, a jam-
ming transition has been proposed: upon increasing the
volume density (or ‘““packing fraction’) of particles p
above a critical p,., the sudden appearance of a finite shear
stiffness signals a transition between flowing liquid and
rigid (but disordered) solid states [1]. It has further been
proposed by Liu and Nagel and co-workers [2,3] that this
jamming transition is a special second-order critical point
(“point J’) in a wider phase diagram whose axes are
volume density p, temperature 7', and applied shear stress
o (the latter parameter taking one out of equilibrium to
nonequilibrium driven steady states). A surface in this
three-dimensional parameter space then separates jammed
from flowing states, and the intersection of this surface
with the equilibrium p-T plane at o = 0 is related to the
structural glass transition.

Several numerical [3—10], theoretical [11-14], and ex-
perimental [5,15-18] works have investigated the jamming
transition, mostly by considering behavior as the transition
is approached from the jammed side. In this work we
consider the flowing state, computing the shear viscosity
7 under applied uniform shear stress. Previous works have
simulated the flowing response to applied shear in glassy
systems at finite temperature [19—-21], and in foams [4] and
granular systems [10] at T = 0, p > p.. Here we consider
the p-o plane at T = 0, showing for the first time that, near
point J, 7 '(p, o) collapses to a universal scaling function
of the variable o/|p. — p|* for both p < p. and p > p..
We further define a correlation length ¢ from steady state
velocity correlations and show that it diverges at point J.
Our results support that jamming is a true second-order
critical phenomenon.

Following O’Hern et al. [3], we simulate frictionless soft
disks in two dimensions (2D) using a bidisperse mixture
with equal numbers of disks of two different radii. The
radii ratio is 1.4 and the interaction between the particles is
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where r;; is the distance between the centers of two parti-
cles i and j, and d;; is the sum of their radii. Particles are
noninteracting when they do not touch, and they interact
with a harmonic repulsion when they overlap. We measure
length in units such that the smaller diameter is unity, and
we measure energy in units such that e = 1. A system of N
disks in an area L, X L, thus has a volume density

p = Nm(0.52 + 0.7%)/(2L,L,). )

To model an applied uniform shear stress, o, we first use
Lees-Edwards boundary conditions [22] to introduce a
uniform shear strain, y. Defining particle i’s position as
r; = (x; + yy; y;), we apply periodic boundary conditions
on the coordinates x; and y; in an L, X L, system. In this
way, each particle upon mapping back to itself under the
periodic boundary condition in the y direction has dis-
placed a distance Ax = yL, in the % direction, resulting
in a shear strain Ax/L, = y. When particles do not touch,
and hence all mutual forces vanish, x; and y; are constant
and a time dependent strain y(¢) produces a uniform shear
flow, dr;/dt = y,(dy/dt)X. When particles touch, we as-
sume a diffusive response to the interparticle forces, as
would be appropriate if the particles were immersed in a
highly viscous liquid or resting upon a rough surface with
high friction. This results in the following equation of
motion, which was first proposed as a model for sheared
foams [4],

dr; D dv(rij)

dr = dr;

dy .
Yk 3)

The strain vy is then treated as a dynamical variable, obey-
ing the equation of motion,
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D and D, are set by the dissipation of the medium in which
the particles are embedded; we take units of time such that
D=D,=1.

In a flowing state at finite o > 0, the sum of the inter-
action terms is of order O(N) so that the right-hand side of
Eq. (4) is O(1). The strain y(r) increases linearly in time on
average, leading to a sheared flow of the particles with
average velocity gradient dv,/dy = (dy/dt), where v, (y)
is the average velocity in the & direction of the particles at
height y. We then measure the shear viscosity, defined by

o _ 0o
dv,/dy (dy/dt)

We expect ! to vanish in a jammed state.

We integrate the equations of motion, Egs. (3) and (4),
starting from an initial random configuration, using the
Heuns method. The time step At is varied according to
system size to ensure our results are independent of Az. We
consider a fixed number of particles N, in a square system
L =L, = Ly, and vary the volume density p by adjusting
the length L according to Eq. (2). We simulate for times #,,
such that the total relative displacement per unit length
transverse to the direction of motion is typically y(t,) ~
10, with y(#,,) ranging between 1 and 200 depending on
the particular system parameters.

In Fig. 1 we show our results for ™" using a fixed small
shear stress, o = 1079, representative of the o — 0 limit.
Our raw results are shown in Fig. 1(a) for several different
numbers of particles N from 64 to 1024. Comparing the
curves for different N as p increases, we see that they
overlap for some range of p, before each drops discontin-
uously into a jammed state. As N increases, the onset value
of p for jamming increases to a limiting value p, =~ 0.84
(consistent with the value for random close packing [3])
and 1! vanishes continuously. For finite N, systems jam
below p,. because there is always a finite probability to find
a configuration with a force chain spanning the width of the
system, thus causing it to jam, and at 7 = 0, once a system
jams, it remains jammed for all further time. As the system
evolves dynamically with increasing simulation time, it
explores an increasing region of configuration space, and
ultimately finds a configuration that causes it to jam. The
statistical weight of such jamming configurations de-
creases, and hence the average time required to jam in-
creases, as one either decreases p, or increases N [3]. In the
limit N — oo, we expect jamming will occur in finite time
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FIG. 1 (color online). (a) Plot of inverse shear viscosity 7! vs

volume density p for several different numbers of particles N, at
constant small applied shear stress o = 107, As N increases,
one see jamming at a limiting value of the density p. ~ 0.84.
(b) Log-log replot of the data of (a) as ! vs p, — p, with p, =
0.8415. The dashed line has slope B = 1.65 indicating the
continuous algebraic vanishing of n~! at p. with a critical
exponent 3.

only for p = p.. In Fig. 1(b) we show a log-log plot of !

versus p. — p, using a value p. = 0.8415. We see that the
data in the unjammed state is well approximated by a
straight line of slope B = 1.65, giving ' ~ |p — p.|?
in agreement with the expectation that point J is a second-
order phase transition.

If point J is indeed a true critical point, one expects that
its influence will be felt also at finite values of the stress o,
with 1! obeying a typical scaling law,

27 (p, ) = lp — pclﬂfi(%). ©)
lp = p.l

Here z = o/|p — p.|* is the crossover scaling variable, A

is the crossover scaling critical exponent, and f_(z), f+(2)

are the two branches of the crossover scaling function for

p < p.and p > p_, respectively.

In Fig. 2 we show a log-log plot of inverse shear vis-
cosity i~ ! versus applied shear stress o, for several differ-
ent values of volume density p. Our results are for systems
large enough that we believe finite size effects are negli-
gible. We use N = 1024 for p < 0.844 and N = 2048 for
p = 0.844. Again we see that p. = 0.8415 separates two
limits of behavior. For p < p_, logn~! is convex in logo,
decreasing to a finite value as o — 0. For p > p_, logn™!
is concave in logo, decreasing towards zero as o — 0. The
dashed straight line, separating the two regions of behav-
ior, indicates the power law dependence that is expected
exactly at p = p,. (see below). Similar power law behavior
at p, was recently found in simulations of a three-
dimensional granular material [23].

In Fig. 3 we replot the data of Fig. 2 in the scaled
variables ' /|p — p.|P versus o/|p — p.|*. Using p, =
0.8415, B = 1.65 [the same values used in Fig. 1(b)] and
A = 1.2, we find an excellent scaling collapse in agree-
ment with the prediction of Eq. (6). As the scaling variable
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FIG. 2 (color online). Plot of inverse shear viscosity B! vs

applied shear stress o for several different values of the volume
density p. The dashed line represents the power law dependence
expected exactly at p = p,. and has a slope 8/A = 1.375. Solid
lines are guides to the eye. Points labeled o = 0.0012 corre-
spond to densities p = 0.870, 0.872, 0.874, 0.876, and 0.878.

7z — 0, f_(z) — const; this gives the vanishing of n~! ~

lp — p.|#P at 0 =0. As z— oo, both branches of the
scaling function approach a common curve, f-(z)~
ZP/A, so that precisely at p = p., 7' ~ P2 as 0 — 0
[24]. This is shown as the dashed line in both Figs. 2 and 3.
A similar scaling collapse of 7 has been found in simula-
tions [20] of a sheared Lennard-Jones glass, as a function
of temperature and applied shear strain rate y, but only
above the glass transition, T > T,.. By comparing the good-
ness of the scaling collapse as parameters are varied, we
estimate the accuracy of the critical exponents to be
roughly 8 =17*02and A = 1.2 = 0.2.

That the crossover scaling exponent A > 0, implies that
o is a relevant variable in the renormalization group sense
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FIG. 3 (color online). Plot of scaled inverse viscosity
1 /lp — p.|B vs scaled shear stress z = o/|p — p.|* for the
data of Fig. 2. We find an excellent collapse to the scaling form
of Eq. (6) using values p. = 0.8415, 8 = 1.65, and A = 1.2.
The dashed line represents the large z asymptotic dependence,
~zB/5 Data point symbols correspond to those used in Fig. 2.

and that critical behavior at finite o should be in a different
universality class from the jamming transition at point J
(i.e., ¢ = 0). The nature of jamming at finite o > 0 will be
determined by the behavior of the branch of the crossover
scaling function f (z) that describes behavior for p > p..
From Fig. 3 we see that f, (z) is a decreasing function of z.
If f,(z) vanishes only when z — 0, then Eq. (6) implies
that ! vanishes for p > p. only when o = 0, and so
there will be no jamming at finite o > 0. If, however, [ (z)
vanishes at some finite z, then 17_1 will vanish whenever
a/(p — p.)* = zy; there will then be a line of jamming
transitions emanating from point J in the p — o plane
given by the curve p*(0) = p,. + (0/29)"/2. If £, (z) van-
ishes continuously at z;, jamming at finite o will be like a
second-order transition; if f, (z) jumps discontinuously to
zero at z, it will be like a first-order transition. Such a first-
order-like transition has been reported in simulations
[20,21] of sheared glasses at finite temperature below the
glass transition, 7 < T,.. However, recent simulations [10]
of a granular system at 7 =0, p > p,., showed that a
similar first-order-like behavior was a finite size effect
that vanished in the thermodynamic limit. With these ob-
servations, we leave the question of criticality at finite o to
future work.

The critical scaling found in Fig. 3 strongly suggests that
point J is indeed a true second-order phase transition and
thus implies that there ought to be a diverging correlation
length & at this point. Measurements of dynamic (time
dependent) susceptibilities have been used to argue for a
divergent length scale in both the thermally driven glass
transition [25] and the density driven jamming transition
[17]. Here we consider the equal time transverse velocity
correlation function in the shear driven steady state,

g(X) = <vy(xi’ yi)vy(xi +x yi)>r (7)

where v, (x; y;) is the instantaneous velocity in the J
direction, transverse to the direction of the average shear
flow, for a particle at position (x;, y;). The average is over
particle positions and time. In the inset to Fig. 4 we plot
g(x)/g(0) versus x for three different values of p at fixed
o = 107* and number of particles N = 1024. We see that
g(x) decreases to negative values at a well-defined mini-
mum, before decaying to zero as x increases. We define &
to be the position of this minimum. That g(£) < 0 indicates
that regions separated by a distance ¢ are anticorrelated.
We can thus interpret the sheared flow in the unjammed
state as due to the rotation of correlated regions of length £.
Similar behavior, leading to a similar definition of £, has
previously been found [26] in correlations of the nonaffine
displacements of particles in a Lennard-Jones glass, in
response to small elastic distortions.

As with viscosity, we expect the correlation length
&(p, o) to obey a scaling equation similar to Eq. (6). We
consider here the inverse correlation length £ !, which like

1~ ! should vanish at the jamming transition, obeying the
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FIG. 4 (color online). Inset: normalized transverse velocity
correlation function g(x)/g(0) vs longitudinal position x for N =
1024 particles, applied shear stress o = 107*, and volume
densities p = 0.830, 0.834, and 0.838. The position of the
minimum determines the correlation length £. Main figure:
plot of scaled inverse correlation length ¢ 7!/|p — p.|” vs scaled
shear stress z = o/|p — p.|* for the data of Fig. 2. We find a
good scaling collapse using values p, = 0.8415, A = 1.2 (the
same as in Fig. 3), and » = 0.6. Data point symbols correspond
to those used in Fig. 2.

scaling equation,

f*'<p,a)=|p—pcl"ht< 7 ) (8)

lp = pcl*
The correlation length critical exponent is v, but the cross-
over exponent A remains the same as for the viscosity.

In Fig. 4 we plot the scaled inverse correlation length,
Elp — p.l?, versus the scaled stress, o/|p — p.|*.
Using p. = 0.8415 and A = 1.2, as was found for the
scaling of ™!, we now find a good scaling collapse for
&7 by taking the value » = 0.6. By comparing the good-
ness of the collapse as v is varied, we estimate v = 0.6 =
0.1. From the scaling equation Eq. (8) we expect both
branches of the scaling function to approach the power
law h(z) ~ 2"/ as 7 — o0, sothat £ ' ~ ¢"/2 as 0 — 0
at p = p. [24]. This is shown as the dashed line in Fig. 4.
Our result is consistent with the conclusion *“v is between
0.6 and 0.7” of Drocco et al. [7] for the flowing phase, p <
p.. It also agrees with v = 0.71 £ 0.08 found by O’Hern
et al. [3] from a finite size scaling argument. Wyart et al.
[14] have proposed a diverging length scale with exponent
v = 0.5 by considering the vibrational spectrum of soft
modes approaching point J from the jammed side, p > p...
While our results cannot rule out » = (.5, our scaling
collapse in Fig. 4 does seem somewhat better when using
the larger value 0.6.
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