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Depinning of the Bragg Glass in a Point Disordered Model Superconductor
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We perform simulations of the three-dimensional frustrated anisotropic XY model with point disorder
as a model of a type-II superconductor with quenched point pinning in a magnetic field and a weak applied
current. Using resistively shunted junction dynamics, we find a critical current /, that separates a creep
region with immeasurably low voltage from a region with a voltage V o« (I — I,) and also identify the
mechanism behind this behavior. It also turns out that data at fixed disorder strength may be collapsed by
plotting V versus T1, where T is the temperature, though the reason for this behavior as yet not is fully

understood.
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The behavior of elastic structures in the presence of
point disorder is a profound question in condensed matter
physics with relevance, e.g., for charge-density waves and
vortex lattices and a number of other systems [1]. Already,
the static problem is a very difficult one due to the com-
petition between the repulsive interactions, which favor a
periodic structure, and both thermal fluctuations and
quenched disorder, with the effect to weaken this order.
The common picture has for some time been that the
quenched disorder turns the vortex lattice into a Bragg
glass, which is a phase with algebraically decaying corre-
lations [2,3], though some recent papers suggest a more
complicated phase diagram [4,5].

The dynamic properties of a rapidly moving medium in
the presence of point disorder is an active field with several
open questions and competing scenarios. The present
Letter concerns the behavior at weak driving fields. That
case has been less discussed, and the usual picture is that of
a sharp depinning transition at zero temperature that is
rounded through thermal activation at nonzero 7.

In this Letter, we present results from dynamic simula-
tions on a three-dimensional (3D) XY model which suggest
that the complete picture is more interesting. Whereas we
confirm the expected behavior at low temperatures, we find
a different behavior at higher temperatures with a critical
current /. that separates a creep region with immeasurably
low (though nonzero) voltage from a region with a recti-
linear behavior. The voltage may furthermore be collapsed
in an unexpected way. Our simulations are in many re-
spects similar to Ref. [6], but our longer simulation times
make it possible to probe the behavior even at very low
drive with higher precision.

The Hamiltonian of the 3D XY model is

H[Bi,A#]= - Z Jiﬂcos(ei_ei-Fﬂ_Aip,_A,u,/L/.L)'

bondsiu
(1)

Here, 6, are the phase angles, the A, are twist variables [7]
in the three Cartesian directions, and the sum is over all
links between nearest neighbors. The vector potential A;,
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PACS numbers: 74.25.Qt, 74.25.Dw, 74.25.Sv

is chosen such that V X A;, = 272, and the frustration
f = 1/45 together with the system size 45 X 45 X 32
gives 45 vortex lines in the system. This low density is
important since it reduces the effects of the discretization
by the numerical grid. The anisotropy is chosen as J;,/J =
1/40, and the disorder is introduced as point defects as in
Ref. [8] through a low density (=1/180) of plaquettes in
the x-y plane with four weak links. The weak links have
coupling (1 — p)J instead of J. In this study of the vortex
solid, we use disorder strengths up to p = 0.34. By mea-
suring the energy of the four links around a vortex at both
defect positions and ordinary plaquettes, we find that the
pinning energy —the energy needed to displace a vortex
from a defect position to an ordinary plaquette—is Ep;, =
E) — E&T = 4.1p.

To study the driven vortex solid, we do resistively
shunted junction (RSJ) dynamics with fluctuating twist
boundary conditions [9], though the twist variable in the
z direction is kept fixed, A, = 0. The equations of motion
are as in [10], and to integrate them, we use a second order
Runge-Kutta method with a dimensionless time step of
Atz =0.1. The length of each run is typically (1-4) X
107Ax.

In our geometry, the vortex lines extend in the —z
direction, and the current is applied along a diagonal, & =
(X + §)/+/2. This gives a force f; along —v = (X — §)/+/2
which is one of the symmetry directions of the vortex lat-
tice. The motion of the vortices gives a change in the twist
variable A, and the voltage is the time derivative of the
twist variable. The voltage per link in the w direction is
given by

yoo LA
L, dt

and the voltage per link along & becomes V =V, = (V, +

Vy)/ V2. We also trace out the vortex lines; the notation

r;(z) is used for the position in the x-y plane of vortex line i

at plane z. The mean-squared fluctuation of the vortex lines

(u?) is also determined. The presented data are for a single
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disorder realization, but similar results have also been
obtained with other disorder realizations.

In Fig. 1, we show the equilibrium phase diagram ob-
tained from both Monte Carlo (MC) and dynamic simula-
tions. From the MC simulations, we find a solid phase
which is separated from the vortex liquid by a first order
transition. The boundary between the ‘“Pinned solid”” and
“Floating solid” regions [11] is from determinations of the
linear resistance, which will be discussed elsewhere. (The
Floating solid is a finite size effect due to a too small total
pinning.) We believe that the Pinned solid phase is a Bragg
glass though the difficulty to equilibrate truly large systems
has hindered us from studying the expected algebraically
decaying correlations [3]. Still, the observed pinning is in
accordance with the expected behavior of a Bragg glass
with many metastable states separated from one another by
large energy barriers. At larger p, there is a sharp vortex
glass transition [12,13] though the position of this transi-
tion has as yet not been determined for the present model
parameters. The solid symbols are the parameter values
where the dynamic simulations described below have been
performed. The dashed region is where we expect the
discrete numerical grid to significantly slow down the
dynamics.

We now turn to the dynamic behavior shown by the I-V
characteristics. Figure 2 shows such data at p = 0.32 and a
wide range of temperatures. The inset shows the behavior
at low temperatures whereas the main panel displays the
rather different behavior at higher 7. Note the difference in
scale; the inset gives an overview whereas the main panel
zooms in on the lower left corner of the inset and gives the
behavior at very low currents.
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FIG. 1. Equilibrium phase diagram for the simulated model.

The open circles connected by a solid line are from determi-
nations of melting temperatures from the vanishing of the
structure factor; the continued dashed line is a sketch of a
possible behavior at low temperatures. The solid line between
“Vortex glass” and ““Vortex liquid” indicates the existence of a
sharp vortex glass transition [12,13], though—as indicated by
the arrows—the precise position has as yet not been determined.
The filled circles show the location in the phase diagram of the
simulations in Fig. 2 at p = 0.32 and the simulations in Fig. 5 at
T = 0.24. The dashed region is where the numerical grid is
expected to significantly affect the dynamics.

As shown in the inset of Fig. 2, there is a sharp transition
at T = 0 which is significantly rounded already at 7 =
0.002; the data fit nicely to the function e ™"/  This is
from a region of the phase diagram where the vortices are
strongly pinned by the numerical grid and the energy
barrier that governs the dynamics is for a single vortex to
move to a neighboring site. To instead examine pinning or
depinning from the disorder, we turn to higher tempera-
tures and weak currents as shown in the main panel of
Fig. 2. The behavior is here very different from the low-T
data and suggests the existence of a critical current density
1. which separates the creep region with an immeasurably
low voltage at I < I, from the moving region with V
(I — 1.). The relevant barrier is the free energy barrier
against displacing the vortex solid one vortex lattice con-
stant = 5 X +/2(X — §), from one low energy configuration
to another equivalent one. The apparently sharp transition
suggests that the relevant energy barrier is much larger than
the temperature.

In a further analysis, it was found to be possible to
collapse the data by plotting the voltage versus the combi-
nation T1, see Fig. 3. We may write V(T,I) = xy(/I,)
where yy is a scaling function and I, « 1/T [14]. In
producing the collapse, we discard the data at low 7 where
the dynamics is expected to be strongly affected by the
discrete lattice, as discussed further below.

To examine the mechanism behind the temperature de-
pendence of the critical current, we now turn to a simplified
model where each of the L,L,L_f sites of a perfect trian-
gular lattice is made into a pinning site with probability
10%. With the pinning distributed in this way, the ground
state is a perfect triangular lattice with all pinning sites
occupied by vortices. The I-V characteristics in Fig. 4(a)
show that this model with p = 0.08 also has a critical
current which decreases with increasing temperature. To
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FIG. 2 (color online). [-V characteristics at p = 0.32 and
several different temperatures. The inset shows the behavior at
the temperatures (from right to left), 7 = 0.000, 0.002, 0.010,
and 0.080. The main figure shows the behavior at high tempera-
tures and weaker current. The behavior is there strongly affected
by the disorder and shows evidence for a sharp change from a
creep region to the behavior V o (I —I,) for I > 1I..
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FIG. 3 (color online). Collapse of the /-V characteristics. The
voltage at p = 0.32 may be collapsed to an impressing accuracy
by plotting the data versus 71.

pinpoint the mechanism behind this behavior, we show the
fraction of vortices located at pinning sites, p,, for the
stationary case, V = 0, in Fig. 4(b). Focusing first at data
with I = 0, we find that p , is strongly reduced by increas-
ing T, which clearly is an effect of an increased wandering
of the vortex lines. Secondly, p, is reduced by increasing I,
and it turns out that the vortex solid only remains immobile
for p,, > const X I, shown by the dashed line in Fig. 4(b).
This means that each pinned vortex can sustain a fixed
force (seemingly independent of temperature), but as the
current increases and p,, /I becomes too small, the vortex
solid is set into motion.

The conclusion is now that the increased wandering at
higher T or higher [ leads to a less efficient pinning, and it
seems likely that the same happens in the model with
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FIG. 4 (color online). Behavior of a simplified system with
point pins ordered in a triangular lattice. Panel (a) shows a
temperature-dependent onset of the voltage. Panel (b) shows
how p,, varies with both temperature and current. The vortex
solid becomes mobile when p, falls below a certain threshold.

random point pins. A direct verification of this fact in
that model is however difficult, since p, is not a good
measure of the efficiency of the pinning in that model, as
the forces from the randomly distributed pinning sites will
point in different directions.

As one more step to improve our understanding of the
effect of the disorder, we now examine how the behavior
V =Ryl in the clean system changes with disorder
strength. Figure 5 gives the -V characteristics at constant
T = 0.24 and four different values of p. The figure shows
that a finite p shifts the voltage down towards zero whereas
the slope changes only very weakly. This suggests the
existence of a force which, much like a friction force, has
to be overcome to set the vortices into motion and also
reduces the velocity of the moving system.

For a system in equilibrium, one would expect the
random pinning to contribute with a number of random
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FIG. 5 (color online). Results at 7 = 0.24 and several different
p. Panel (a) shows that the effect of a finite p on the I-V
characteristics is to shift the data down towards zero. This gives
a creep region with very low voltage at low currents, / < /., and
a region with a rectilinear behavior at larger /. The inset
illustrates the suggested mechanism: when a vortex line moves
in the direction of the applied force, the vortices at defect
positions will on the average lag behind the moving vortex
lattice. Panel (b) gives the displacement, c.f. Eq. (2) in the
direction opposite to f;. Panel (c) is a calculation of the voltage
from R, of the pure system and I, from the measured d and
Eq. (3), which shows that the suggested mechanism captures the
essential elements of the dynamics.
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forces which cancel one another out, but the slow drift of
the vortices opens up for other possibilities. We propose a
mechanism where some of the vortices at the pinning
centers lag behind the unpinned vortices. This leads to a
distortion of the elastic vortex lines (see inset of Fig. 5(a)),
and also a force f,; from the defect vortices on the vortex
lattice. The motion would then be in response to the total
force f; — f4, which is in good agreement with the behav-
ior in Fig. 5(a).

To try to put this on a more solid footing, we introduce a
defect operator D(r, z) which is unity at a defect and zero
otherwise. The average position of all nondefect vortices
belonging to the same vortex line is then,

r; =[1— D(rz), 2)]r;(2).

As a measure of the lagging behind of the defect vortices,
we introduce the displacement d, as the sum of their
deviations from the average vortex line positions,

ROHACCRSLITIR) SE

i

Figure 5(b) is a confirmation on a qualitative level of this
idea. With the motion along —V, the positive value of d - ¥
shows that the defect vortices on the average lag somewhat
behind the ordinary vortices. (We remark that this estimate
of the displacement only contains contributions relative to
the vortex lines whereas the total displacement also should
include effects due to a vortex line or a set of vortex lines
lagging behind the rest of the vortex lattice. This is how-
ever considerably more difficult to estimate, and as we will
see, it seems that the expression above contains the domi-
nant contribution.)

For a quantitative check one would like to compare the
magnitude of this defect force f,; with f; from the applied
current. We do a similar comparison by instead estimating
1,, the current density in the system due to the displaced
vortices. Recall that the creation of a vortex pair in a 2D
model with a separation of d lattice constants in the y
direction creates d rows in the x direction where the phase
angle rotates by 2. This gives a total current [, =
dsin(2w/L,) = 2md/L,. Taking this over to our 3D sys-
tem, we conclude that a displacement d corresponds to a
current density

~——d 3)

and the measured d - Vv together with R, from the pure
system gives an estimate of the voltage, V; = Ry(I — I,).
Figure 5(c) shows that this V,; (obtained from d) is in good
agreement with the measured voltage shown in Fig. 5(a),
and this suggests that our simple description in terms of the
lagging behind of the defect vortices indeed captures the
essential elements of the dynamics.

To obtain the collapse in Fig. 2, it was necessary to
discard the points at low temperatures. The rationale was
that the discretization of the system at low temperatures

reduces the voltage, and the criterion for large effects of the
discretization was (u?) < 1. This criterion is adopted from
the behavior in a clean system of the linear resistance, R;,
which is proportional to the diffusion constant for the
vortex line lattice. At temperatures below 7 = (.14, the
vortex lattice is pinned to the numerical grid, R, = 0. R,
then increases rapidly with increasing temperature up to
T = 0.22 where the increase becomes much slower. From
this, we conclude that the effect of the numerical grid to
slow down the dynamics is significant at 7 < 0.22. At T =
0.22, the mean-squared fluctuation of the vortex lines is
(u*) = 1.03, which leads to our criterion (u?) <1 for
significant effects of the numerical grid. This is the dashed
region in Fig. 1.

To conclude, we have examined how point disorder
affects the /-V characteristics of a frustrated 3D XY model
and have found an unexpected behavior with a critical
current that separates the creep region at I <. from a
region with V o (I — I,). Whereas it was possible to
understand the behavior at a qualitative level, the reason
for the collapse when plotting the data versus 71 remains
enigmatic and calls for further investigations.
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