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Resistively shunted junction dynamics is applied to the three-dimensional uniformly frustrated XY
model with randomly perturbed couplings, as a model for driven steady states in a type-II superconductor
with quenched point pinning. For a disorder strength p strong enough to produce a vortex glass in
equilibrium, we map the phase diagram as a function of temperature T and uniform driving current I.
Using finite size analysis and averaging over many realizations of quenched randomness we find a first-
order melting Tm�I� from a vortex line smectic to an anisotropic liquid.
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Ordering and phase transitions in driven steady states far
from equilibrium remain topics of considerable general
interest. In particular, the spatial ordering of driven vortex
lines in a type-II superconductor with random point pin-
ning has received considerable theoretical [1–4] and ex-
perimental [5] attention. Originally, Koshelev and Vinokur
proposed [1] that a moving steady state would average over
quenched randomness, and that a system which was dis-
ordered in equilibrium could reform into an ordered vortex
lattice when driven. Later, Giamarchi and Le Doussal [2]
argued that this state would be a ‘‘moving Bragg glass,’’
with algebraically decaying translational correlations both
parallel and transverse to the driving force. Balents,
Marchetti, and Radzihovsky [3] then argued that the mov-
ing Bragg glass would be unstable to dislocations which
decouple the planes of vortex lines moving parallel to the
drive, resulting in a smectic ordering. Other theoretical
works [4] have supported one or more of these scenarios.

While numerous simulations have studied this problem
for point vortices in two dimensions [6], few works have
treated three-dimensional (3D) vortex lines at finite tem-
perature [7–10]. We present here the first 3D simulations to
include both a systematic study of finite size effects as well
as averaging over many realizations of the quenched ran-
domness [11]. Such considerations are necessary for an
unambiguous determination of ordering in driven steady
states. We map the phase diagram as a function of tem-
perature T and driving current I for the strongly random
case, and study the nature of ordering just below and above
the melting transition Tm�I�.

Following Refs. [8–10] we use the 3D XY model [12]
with resistively shunted junction (RSJ) dynamics [13] to
model our system. The Hamiltonian is given by

 H ���ri�� � �
X

i�

Ji� cos���ri� � ��ri � �̂� � Ai��; (1)

where ��ri� is the phase of the superconducting wave
function on site ri of a cubic Lx � Ly � Lz grid of sites
with bonds in directions� � x; y; z. The circulation of Ai�

around any plaquette of the grid is fixed and equal to 2�f
with f the density of applied magnetic flux quanta through
that plaquette. We use a uniform value f � 1=12 oriented
in the ẑ direction. The resulting field induced vortex line
density, also equal to f, forms a vortex lattice in the
equilibrium ground state of the pure (disorder-free) system,
with basis vectors a1 � 4ŷ and a2 � 3x̂� 2ŷ. To model
quenched point randomness we use couplings [14] Ji� �
J��1� p�i��, where �i� are uncorrelated, uniformly dis-
tributed, random variables with h�i�i � 0, h�2

i�i � 1. We
use J� � J? in the xy plane, and Jz � J?=40 to enhance
vortex line fluctuations along the ẑ direction. The disorder
strength is controlled by the parameter p. In our earlier
work [14,15] we showed that above a critical pc the vortex
line lattice becomes unstable to a vortex glass at low
temperatures in equilibrium. Here we consider the strongly
random limit p � 0:15>pc 	 0:14.

We use RSJ dynamics, with the equation of motion as in
[9], however, with fluctuating twist boundary conditions
[13] in all directions. We apply a uniform current I � Ix̂,
resulting in a force ẑ� I on the vortex lines driving them
in the ŷ direction. We use a second order Runge-Kutta
integration method with dimensionless time step [9] �t �
0:1, and typically 2:6� 106 time steps per simulation run,
resulting in a net displacement of the vortex line center of
mass of roughly 48 000 grid spacings in the ordered phase.
Depending on system size, up to 3=4 of these steps may be
discarded for equilibration. When probing behavior at a
specific point in the T-I plane, we usually take the pure
system ground state as our initial configuration. For nu-
merous test cases, however, we have started with a random
initial state at high T and slowly cooled to the desired
point. Except for a narrow region of hysteresis at the
melting transition, we always find the same long time
steady state for both initial conditions.

To determine the structural order of our system, we use
the vortex structure function

 S�k� �
1

fLxLyLz

X

R;r

eik
rhnz�R� r�nz�R�i; (2)
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where nz�r� is the vortex line density in the ẑ direction at
position r. We use h
 
 
i to denote averages over simulation
time and �
 
 
� to denote averages over independent real-
izations of quenched randomness (typically 40 realizations
are used). We also consider the correlations

 C�x; y; z� �
1

LxLyLz

X

k

S�k�e�ik
r; (3)

 

~C�x; ky; z� �
1

LxLz

X

kxkz

S�k�e�i�kxx�kzz�: (4)

Using the appearance of sharp peaks in S�k?; kz � 0� to
signal an ordered phase, in Fig. 1(a) we present the T-I
phase diagram for a 24� 24� 16 sized system for both
the pure (p � 0) and random (p � 0:15) cases. We mea-
sure T in units of J?, and I in units of I0 � 2eJ?=@.
Crossing the phase boundary at any value of the current
we find a discrete jump in energy, suggesting a first-order
melting transition Tm�I�. For the random case, our phase
boundary is from a single random realization only and is
determined by two separate methods: by cooling in T at
fixed I from the disordered phase (solid line); by increasing
and decreasing I at fixed T from within the ordered phase
(dashed line). Assuming some hysteresis, as in a first-order
transition, the two methods give reasonable agreement. At
fixed T, the random system orders only for a finite current
interval Ic1�T�< I < Ic2�T�. For the pure case, our Tm�I�
looks qualitatively similar to that found in Ref. [9] for the
weakly random case p < pc. The melting of the ordered
phase upon increasing I > Ic2, which exists for both ran-
dom and pure systems, is contrary to theoretical predic-
tions [1–4]. Reference [9] suggested this to be a

consequence of thermally excited vortex loops. We in
fact find that the density of thermally excited loops is
negligible everywhere in the ordered phase, but shows a
finite jump to a noticeable amount as Tm�I� is crossed; this
jump is particularly large as I crosses Ic2�T�.

Consider first the disordered phase. Figure 1(b) shows an
intensity plot of lnS�k?; kz � 0� for a single realization of
a random 483 system at I � 0:48, T � 0:13, just above the
maximum in Tm�I�. Two relatively faint peaks,
S�K0�=S�0� ’ 0:008, lie off the origin along the kx axis.
Previous works [9,10] have interpreted such peaks as evi-
dence for a smectic phase. However, as shown in Fig. 2(b),
we find no significant increase of peak height S�K0� with
system size, thus indicating that this is an anisotropic liquid
with only short ranged translational correlations.

Next consider the ordered phase. Figure 2(a) shows an
intensity plot of lnS�k?; kz � 0� for a single realization of
a random 483 system at I � 0:48, T � 0:09, just below the
maximum in Tm�I�. Now sharp peaks, Speak=S�0� ’ 1, lie
along the kx axis. In the pure system, the vortex lattice state
has Bragg peaks at K10 � �2�=3�x̂ and K11 � �2���
�x̂=6� ŷ=4�, as labeled in Fig. 2(a). In the random system
a peak remains exactly at K10; a second peak is always
found with Ky � K11;y but with Kx � K11;x � 0;�2�=Ly
depending on the particular random realization. We there-
fore generalize our notation to denote by K11 the exact
location of this second peak, with the understanding that
the value of K11;x may shift slightly between different
random realizations. In Fig. 2(b) we plot the disorder
averaged height of these peaks, �S�K10�� and �S�K11��, vs
system volume, V � LxLyLz, for several different system

 

FIG. 1. (a) Phase diagram as function of temperature T and
uniform driving current Ix̂ (vortex lines move in the ŷ direction).
Solid symbols are for a pure system, p � 0. Open symbols are
for a system with quenched point pinning, p � 0:15; � is phase
boundary obtained by cooling T from the disordered phase at
fixed I, while � is phase boundary obtained by increasing or
decreasing I from the ordered phase at fixed T. Results are from
a 24� 24� 16 size system. (b) Intensity plot of lnS�k?; kz �
0�, for one particular random realization (p � 0:15), in disor-
dered phase at I � 0:48, T � 0:13 for a 48� 48� 48 size
system; k � 0 is at the center of the figure.

 

FIG. 2 (color online). (a) Intensity plot of lnS�k?; kz � 0�, for
one particular random realization, in ordered phase at I � 0:48,
T � 0:09 for a Lx � Ly � Lz � 48 size system; k � 0 is at the
center of the figure. (b) Scaling of disorder averaged peaks
heights vs system volume V � LxLyLz. For the ordered state
of (a) we plot �S�K10�� and �S�K11�� for pure (p � 0) systems of
size 24� 24� L (squares) and L� L� 24 (triangles), and for
systems with quenched point pinning (p � 0:15) of size L3, L �
12, 24, 36, 48, 60 (circles). We also plot �S�K0�� for the p �
0:15 disordered state at T � 0:13 of Fig. 1(b) for systems of size
L3 with L � 24, 36, 48, 60 (crosses).

PRL 97, 267002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2006

267002-2



sizes, for both the pure and random cases. In both cases
�S�K10�� scales linearly with V, indicating a sharp Bragg
peak. This Bragg peak indicates that vortex lines are
organized into specific yz planes with a periodic spacing
of 3x̂ between planes. Ordering within and between planes
is reflected in the scaling of �S�K11��. For the pure case,
S�K11� 
 V, indicating the long range translational order
of a moving vortex line lattice. For the random case,
however, �S�K11�� grows less rapidly than V. The dashed
line Fig. 2(b) represents a power law divergence of
�S�K11�� 
 V2=3 
 L2; however, if we discard the smallest
point at L � 12, the exponent of a power law fit in L
becomes 1.65. It is thus unclear from Fig. 2(b) whether
our biggest size system has reached the asymptotically
large L limit. The sublinear growth of �S�K11�� with V
indicates that the system has less than long range transla-
tional order. However, it does not indicate which direc-
tion(s) are less ordered than others. For this we will
consider the shape of the peak at K11 and the real space
correlations of Eqs. (3) and (4).

The sharpness of the peak at K11 in the k̂y direction
suggests that vortex lines are periodically ordered along
their direction of motion ŷ within each yz plane. That this
peak appears broad in the k̂x direction suggests that the yz
planes have only short range correlations between them.
We thus refer to the yz planes containing the vortex lines as
smectic planes. We now consider the real space correla-
tions of Eqs. (3) and (4). Figure 3(a) shows an intensity plot
of C�x; y; z � 0� corresponding to S�k� of Fig. 2(a). We
clearly see the structure proposed above: vortices lie in
periodically spaced yz planes with separation 3x̂; within a
given plane, i.e., x � 0, vortices are periodic with separa-
tion 4ŷ; at finite transverse separation, i.e., jxj> 0, the
variation of C�x; y; 0� with y decreases, until at large jxj
it is almost uniform in y, thus indicating short ranged
correlations between the smectic planes. To quantify this,

we consider the correlation Eq. (4) evaluated at ky � K11;y

giving the periodicity within a given smectic plane. Since
the slightly different values of K11;x for the different ran-
dom realizations give rise to different complex phase shifts
in ~C�x; K11;y; z � 0�, we disorder average the absolute
value. In Fig. 3(b) we plot �j ~C�x;K11;y; 0�j�=C0 vs x, for
different system sizes L3. We normalize by C0 �

�j ~C�0; K11;y; 0�j� to better compare different system sizes.
We see a clear exponential decay to zero; solid lines are fits
to a periodic exponential giving correlation lengths in the
range �x 
 5–6:5. In recent works [9,10] pictures similar to
Fig. 2(a) were identified as a moving Bragg glass.
However, the short range correlations of Fig. 3(b) clearly
show our ordered phase to be a smectic rather than a Bragg
glass.

Next we consider correlations parallel to the direction of
motion ŷ, within a given smectic plane. Figure 4(a) shows
�C�0; y; 0�� vs y, for various system sizes, for the same I �
0:48, T � 0:09 as in Figs. 2 and 3. Since we found �x 
 6
is fairly small, we include also systems of size 36� L� L
in order to obtain larger values of Ly. Figure 4 suggests
decay to a periodic oscillation, with only a small finite size
effect when y
 Ly=2. The large y limit can be described
by the three envelop functions, �Cmax�Ly�� �
minm�C�0; 4m; 0��, �Cmin�Ly�� � maxm�C�0; 4m� 2; 0��,
and �Cmid�Ly�� � maxm�C�0; 4m� 1; 0��, for m integer,
which we plot vs Ly in Fig. 4(b). For long range transla-
tional order, these should converge to different constants as
Ly ! 1. For algebraic or short range order, these should
all converge to the value 1=4 characterizing a uniform
vortex line density. We find that both exponential decay
to long range order (red solid line) and an algebraic decay
to 1=4 (blue dashed line) give equally good fits. For long

 

FIG. 3 (color online). (a) Intensity plot of real space correla-
tion, C�x; y; z � 0�, for one particular random realization, in
ordered phase at I � 0:48, T � 0:09, p � 0:15, for a Lx � Ly �
Lz � 48 size system; r � 0 is at the center of the figure.
(b) Corresponding disorder averaged correlation,
�j ~C�x;K11;y; z � 0�j� vs x for systems of size L� L� L.

 

FIG. 4 (color online). (a) Disorder averaged real space corre-
lation, �C�x � 0; y; z � 0�� vs y for various system sizes, in the
ordered phase at I � 0:48, T � 0:09, p � 0:15.
(b) Corresponding limiting values of maximum, middle, and
minimum envelop of �C�x � 0; y; z � 0�� (see text) vs Ly for
various system sizes; the red solid line is a fit to an exponential
decay to a constant, and the blue dashed line is a fit to an
algebraic decay to 1=4.
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range order, the fit to �Cmax� gives a decay length �y 
 25,
while the algebraic fit to �Cmax� gives a power law exponent
of 
0:2.

Finally, we consider the correlations along ẑ, parallel to
the applied magnetic field, within a given smectic plane.
Figure 5(a) shows �C�0; 0; z�� � 1=4 vs z, for various sys-
tem sizes, for the same I � 0:48, T � 0:09 as before. The
subtracted value 1=4 is the uniform vortex density in the
smectic plane, in the absence of any ordering. For the
largest system size Ly � 96 we find an exponential decay
to zero with a decay length �z 
 9. Smaller sizes show a
decay to a small finite constant that decreases with increas-
ing Ly, consistent with our earlier observation in Fig. 2(b)
that �S�K11�� has not yet reached the asymptotic large L
limit for L � 60. In Fig. 5(b) we show an instantaneous
configuration of vortex lines in a particular smectic plane.
At fixed z, the lines appear periodically spaced along y, in
agreement with Fig. 4. However, tracing any particular line
along z, we see that it wanders an amount comparable to
the interline spacing, consistent with the decay seen in
Fig. 5(a). In some planes, such as the one shown in
Fig. 5(b), lines can have a net tilt, by closing onto one of
their neighbors under the periodic boundary condition
along ẑ. Each such tilted plane must be compensated by
another plane that tilts in the opposite direction, so that the
net vorticity in the ŷ direction vanishes. Looking at indi-
vidual configurations, we find a strong relation between the
correlations along ẑ within a given smectic plane and the
correlations along x̂ between different smectic planes.
When the lines in a smectic plane are tilted, as in
Fig. 5(b), or otherwise have a transverse wandering com-
parable to the average spacing between lines, we find that
this plane decouples from its neighbors, moving either
diffusively with respect to its neighbors, or even with a
slightly different average speed. Planes whose lines have
small transverse wanderings, remain strongly correlated

with their neighbors. It is necessary to have only a few
such decoupled smectic planes in order to have short range
average correlations along x̂, as in Fig. 3(b).

Our analysis of the ordered phase has been for a point
just below the peak in the first-order melting curve Tm�I�.
Establishing the nature of correlations throughout the or-
dered phase would require similar finite-size, random-
realization-averaged analyses elsewhere in this region.
Our preliminary investigations suggest that as either T or
I is decreased, finite correlation lengths grow and become
too large to make such studies feasible at present. We thus
cannot rule out the possibility of a more ordered moving
Bragg glass phase at lower temperatures.
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FIG. 5 (color online). (a) Disorder averaged real space corre-
lation, �C�x � 0; y � 0; z�� � 1=4 vs z for various system sizes,
in the ordered phase at I � 0:48, T � 0:09, p � 0:15.
(b) Instantaneous vortex line configuration in a particular smec-
tic plane of a particular random realization, in the ordered phase
at the same parameters as (a), for a system of size 36� 96� 96.
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