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We numerically simulate the uniform athermal shearing of bidisperse, frictionless, two-dimensional
spherocylinders and three-dimensional prolate ellipsoids. We focus on the orientational ordering of
particles as an asphericity parameter α → 0 and particles approach spherical. We find that the nematic order
parameter S2 is nonmonotonic in the packing fraction ϕ and that, as α → 0, S2 stays finite at jamming and
above. The approach to spherical particles thus appears to be singular. We also find that sheared particles
continue to rotate above jamming and that particle contacts preferentially lie along the narrowest width of
the particles, even as α → 0.
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Models of athermal (T ¼ 0) granular materials have
often focused on the simplest case of spherical particles.
Recently, however, more attention has been paid to the case
of elongated particles with lower rotational symmetry [1].
The question then arises whether such elongated particles
will orientationally order as the particle density increases,
so as to pack more efficiently. While elongated particles in
thermal equilibrium are known to have a nematic orienta-
tional ordering transition [2,3], recent works have found
that such particles do not orientationally order upon
athermal isotropic compression [4–8].
Orientational ordering is, however, found when elon-

gated particles are placed in an athermal uniform shear
flow. In this case, drag forces between the particle and the
flow will cause the particle to tumble [9]. If the particle is
asymmetrical, with unequal eigenvalues of its moment of
inertia tensor, tumbling will have a nonuniform rotational
velocity; the torque from drag forces will vary with the
particle’s orientation, and the particle will on average align
with the flow direction. For a finite density of colliding
particles, nematic ordering remains, but the nematic direc-
tor becomes oriented at a finite angle with respect to the
flow direction [10–18].
Here we investigate the nematic ordering of frictionless,

aspherically shaped particles, athermally sheared at con-
stant strain rate _γ, putting the system into a steady state of
simple shear flow. We consider behavior as an asphericity
parameter α → 0, and the particles approach spherical. We
find the surprising result that a finite nematic ordering
persists even as α → 0, suggesting that the shear-driven
jamming of aspherical particles has a singular limit as
α → 0. Since most particles in nature are not truly spheri-
cal, our result may have broad implications for granular
shear flows.

Models.—We consider two different numerical models:
(i) spherocylinders in two dimensions (2D) and (ii) prolate
ellipsoids in three dimensions (3D). In both cases, we take a
bidisperse distribution of particle sizes, with equal numbers
of big and small particles. We use soft-core particles with a
one-sided harmonic elastic repulsion. The system length is
L in all directions, with periodic boundary conditions along
the flow direction x̂ and Lees-Edwards boundary condi-
tions [19] with a uniform strain rate _γ in the transverse
direction ŷ. In 3D, we take periodic boundary conditions
along ẑ. The particle packing fraction is ϕ ¼ P

ivi=V, with
vi the volume of particle i and V ¼ Ld the system volume
(d ¼ 2 or 3 for 2D and 3D, respectively).
2D spherocylinders.—A 2D spherocylinder consists of a

rectangle of length L, with two semicircular end caps of
diameter D [see the inset in Fig. 5(a)]. We define the
asphericity parameter α ¼ L=D. Big and small particles
have equal α, with Db=Ds ¼ 1.4. Taking the “spine” of the
spherocylinder as the line bisecting the rectangle parallel to
its length L, we define rij as the shortest distance between
the spines of spherocylinders i and j and dij ¼ ðDiþ
DjÞ=2. Two spherocylinders are in contact whenever
rij < dij, in which case the elastic interaction is Uel ¼
ðke=2Þð1 − rij=dijÞ2 and the repulsive elastic force on i is
Fel
ij ¼ ðke=dijÞð1 − rij=dijÞn̂ij, with n̂ij the unit vector

pointing normally inwards to particle i at the point of
contact with j [8,20].
Our dynamics is the mean-field Durian model for foams

[25], generalized to nonspherical particles. The dissipative
force on a spherocylinder is a Stokes drag between the
particle and a uniform background shear flow, Fdis

i ¼
−kdvið_ri − yi _γ x̂Þ, with ri ¼ ðxi; yiÞ the center of mass
of spherocylinder i, _ri the center of mass velocity, and kd
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the viscous coupling. We use overdamped dynamics
Fdis
i þP

jF
el
ij ¼ 0, where the sum is over all particles j

in contact with i.
The elastic and dissipative forces produce torques on the

spherocylinders. The elastic torque on particle i due to
contact with j is τelij ¼ ẑτelij ¼ sij × Fel

ij, where sij is the
moment arm from the center of mass of i to its point of
contact with j. A dissipative torque arises from the variation
of the background shear flow velocity over the spatial
extent of the particle [26]. Integrating over the particle area
gives τdisi ¼ −kdviIi½_θi þ _γfðθiÞ�, where θi is the angle of
the spine with respect to the flow direction x̂ and
fðθÞ ¼ ½1 − C cos 2θ�=2. The overdamped τdisi þP

jτ
el
ij ¼

0 determines the particle rotation. Here Ii is the sum of the
two eigenvalues of the moment of inertia tensor, and
C ¼ ΔIi=Ii, with ΔIi the difference between the two
eigenvalues. For spherocylinders, Ii¼ðDi=2Þ2ð3πþ24αþ
6πα2þ8α3Þ=ð6πþ24αÞ. For a circle,ΔI ¼ 0, and so in the
absence of collisions _θ=_γ ¼ −1=2. We take as the unit of
length Ds ¼ 1, the unit of energy ke ¼ 1, and the unit of
time t0 ¼ D2

skd=ke ¼ 1. We integrate the equations of
motion using the Heun method with step size Δt=t0 ¼
0.02. We use N ¼ 1024 particles.
3D prolate ellipsoids.—We take prolate ellipsoids of

revolution with major axis length a1 and minor axes length
a2. The asphericity is α ¼ a1=a2 − 1. Big and small
particles have equal α, with a1b=a1s ¼ 1.4. When two
ellipsoids i and j overlap, we define a scale factor δij < 1

such that the particles just barely touch when their axes are
rescaled by δij, keeping the center of mass positions fixed
[20]. The elastic interaction is then Uel ¼ ðke=2Þð1 − δijÞ2,
and the repulsive elastic force on i is Fel

ij ¼ keδijð1−
δijÞn̂ij=½ðri − rjÞ · n̂ij�, with ri the center of mass of
ellipsoid i and n̂ij the unit vector pointing normally inwards
to particle i at the point of contact with j.
We take a purely collisional dynamics. The dissipative

force on ellipsoid i is due to contact with j and is
proportional to the difference in particle velocities at their
point of contact, Fdis

ij ¼ −kdð_ri þωi × sij − _rj − ωj × sjiÞ,
with _ri the center of mass velocity, ωi the angular velocity
about the center of mass, and sij the moment arm from the
center of i to the point of contact with j [27]. We use
Newton’s equation of motion, mi ̈ri ¼

P
j½Fdis

ij þ Fel
ij�,

where the sum is over all particles j in contact with i
and the massmi is taken proportional to the particle volume
vi. The rotation of particle i is governed by Ii · _ωi ¼P

jsij × ½Fdis
ij þ Fel

ij�, where Ii is the moment of inertia
tensor of i.
We take as the unit of lengthDs ≡

ffiffiffiffiffiffiffiffiffiffiffiffi
a1sa22s

3
p ¼ 1, the unit

of energy ke ¼ 1, the unit of mass ms ¼ 1 and the unit of
time t0 ¼ Ds

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=ke

p ¼ 1. Collision elasticity is measured
by Q ¼ ffiffiffiffiffiffiffiffiffiffi

mske
p

=ðkdDsÞ ¼ 2, which would be the quality
factor of a corresponding damped oscillator. We integrate

the equations of motion using a modified velocity Verlet
algorithm [27] with step size Δt=t0 ¼ 0.05. We use N ¼
1024 particles.
Results.—In this Letter, we focus on the orientational

order and tumbling of particles rather than rheology. To
measure nematic ordering, we compute the tensor [13]

hTμνi ¼
�

d
ðd − 1ÞN

XN
i¼1

�
l̂iμl̂iν −

1

d
δμν

��
; ð1Þ

where l̂i is a unit vector along the spine of the spherocy-
linder or the major axis of the ellipsoid, μ and ν denote
spatial components, d ¼ 2, 3 is the spatial dimension, and
h…i denotes an average over configurations in the sheared
ensemble. The largest eigenvalue of hTμνi is the magnitude
of the nematic order parameter S2. The corresponding
eigenvector l̂2 gives the orientation of the nematic director,
which by symmetry lies in the xy plane; θ2 is the angle of
l̂2 with respect to the flow direction x̂, and S2 ¼ S2l̂2.
In Fig. 1, we plot S2 vs ϕ for particles of fixed small

asphericity α, at different shear rates _γ: (a) 2D spherocy-
linders at α ¼ 0.01 and (b) 3D ellipsoids at α ¼ 0.02. Both
cases show similar behavior. In contrast to previous works
[10–12] that found increasing orientational order with
increasing ϕ, here we find a nonmonotonic S2 [17] with
peak value S2max at a ϕmax slightly below the α ¼ 0
jamming transition at ϕð0Þ

J . As _γ decreases, the values of
S2 approach a common limiting curve [13,14]; above ϕð0Þ

J ,
nematic order S2 stays finite, but there is a stronger _γ
dependence.
In Fig. 2, we plot S2 vs ϕ for a range of α, showing

results for both a smaller _γ1 (solid symbols) and a larger _γ2
(open symbols); see Table I for values. In each case, _γ1 and
_γ2 are sufficiently small that S2 shows no noticeable _γ
dependence for ϕ up to and slightly beyond the peak at
ϕmax; however, some small _γ dependence remains at the
highest ϕ. What is remarkable is that the orientational
ordering S2max remains quite sizable even for particles
close to spherical with α ¼ 0.001.
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FIG. 1. Nematic order parameter S2 vs packing ϕ at different
shear strain rates _γ. (a) 2D spherocylinders at asphericity α ¼
0.01 and (b) 3D ellipsoids at α ¼ 0.02. Vertical dashed lines
locate the jamming transition of α ¼ 0 spherical particles, ϕð0Þ

J ¼
0.8433 for 2D [28–30] and 0.649 for 3D [31].
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Figure 2 shows S2 averaged over the steady state
ensemble. We have also computed the instantaneous
S2ðγÞ and θ2ðγÞ as functions of the system strain γ ¼ _γt.
We find that, near and above the peak at ϕmax, S2ðγÞ shows
random fluctuations about a well-defined average; there is
no macroscopically coherent tumbling of particles [20].
One can still ask if individual particles tumble incoherently
[14,15], or whether they are orientationally locked into
small fluctuations about the nematic director l̂2. We find
the former to be the case.
In Fig. 3, we plot the component of the average particle

angular velocity in the direction of the system vorticity,
scaled by the strain rate, −hωzii=_γ; note that −hωzii > 0
indicates clockwise rotation. For 2D spherocylinders,
ωzi ¼ _θi. In each case, we show results at two different
strain rates _γ1 < _γ2, as in Fig. 2 (see Table I), and find little
dependence on _γ except for the largest ϕ. Comparing
Figs. 2 and 3, we find that the rotation velocity is
anticorrelated with the orientational order; −hωzii=_γ is
nonmonotonic in ϕ and is smallest when S2 is largest.
For small but finite α, −hωzii=_γ approaches the spherical
limit of 1=2 at small ϕ but shows a significant dip below
1=2 at ϕmax. For 2D spherocylinders, this dip remains
sizable even for very small α ¼ 0.001. For 3D ellipsoids,
we cannot get accurate results at similar small values of α,
but Fig. 3(b) shows that the trends appear to be the same.
We conclude that particles continue to rotate, with finite
hωzii=_γ, even above jamming.
Returning to the nematic ordering, in Fig. 4(a), we plot

S2max vs α for both 2D spherocylinders and 3D ellipsoids.

Solid lines are fits to the empirical form S2max ¼ S0 þ cαβ,
using the five smallest α points. We find S0 ¼ 0.25 for 2D
spherocylinders and S0 ¼ 0.16 for 3D ellipsoids. If we
exclude the data point at the smallest α ¼ 0.001, then our
data would be reasonably fit [dashed lines in Fig. 4(a)] by a
pure power law with exponent ≈0.14. However, in
Ref. [20], we give detailed tests confirming that our data
point at α ¼ 0.001 is accurate and so should not be
excluded.
In Fig. 4(b), we plot ϕð0Þ

J − ϕmax vs α, where ϕ
ð0Þ
J is the

jamming transition for spherical particles. In both 2D and
3D, we find ϕð0Þ

J − ϕmax → 0 as α → 0, showing that the
peak in S2 approaches the jamming transition as α → 0. For
2D spherocylinders, we find a power law dependence,
ϕð0Þ
J − ϕmax ∼ αΔ with Δ ≈ 0.43, as illustrated by the

dashed line in the figure. For 3D ellipsoids, our data do
not suggest any clear form for the small α behavior. The
observations of Figs. 2 and 4 thus lead us to conclude that,
even as α → 0 and particles are approaching the spherical
limit, a finite nematic ordering S2 exists at the jamming ϕð0Þ

J
and above.
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FIG. 2. Nematic order parameter S2 for (a) 2D spherocylinders
and (b) 3D ellipsoids vs packing ϕ for different asphericities α, at
two different small strain rates _γ1 (solid symbols) < _γ2 (open
symbols); see Table I for values. Vertical dashed lines locate the

jamming ϕð0Þ
J of spherical particles.
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TABLE I. Strain rate values used for data in Figs. 2 and 3.

2D: α _γ1 _γ2 3D: α _γ1 _γ2

0.001 1 × 10−7 4 × 10−7 α ≤ 0.02 1 × 10−7 2 × 10−7

0.01 4 × 10−7 1 × 10−6 0.05 5 × 10−7 1 × 10−6

α ≥ 0.06 1 × 10−5 4 × 10−5 0.2 2 × 10−6 5 × 10−6

0.7 5 × 10−6 1 × 10−5
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FIG. 4. For 2D spherocylinders and 3D ellipsoids. (a) S2max vs
α. Solid lines are fits to S0 þ cαβ, using the five smallest α points.
Dropping the point at α ¼ 0.001, dashed lines show power law

fits. (b) ϕð0Þ
J − ϕmax vs α, with ϕð0Þ

J the α ¼ 0 jamming point.
Solid lines connect the data points; the dashed line for the 2D
spherocylinders is a power law fit to the five smallest α points.
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To look for a microscopic signature of this singu-
lar α → 0 limit, we measure the location on a particle’s
surface of the interparticle contacts. For 2D sphero-
cylinders, we define ðr; ϑÞ as the radial distance
and polar angle of a point on the surface with respect to
the center of the particle and the direction of the spine. We
define PðϑÞ as the probability density per unit surface
length to have a contact at ϑ, with normalization 1 ¼
A−1 R 2π

0 dϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðdr=dϑÞ2

p
PðϑÞ, with A the perimeter

length [32]. For 3D ellipsoids, we define ðr; ϑ;φÞ as the
spherical coordinates with respect to the major axis;
Pðϑ;φÞ is the probability density per unit surface area
to have a contact at ðϑ;φÞ, with normalization
1 ¼ A−1 R 2π

0 dφ
R
π
0 dϑ sinϑr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðdr=dϑÞ2

p
Pðϑ;φÞ; A

is the surface area. For simplicity, we consider
PðϑÞ ¼ ð2πÞ−1 R 2π

0 dφPðϑ;φÞ. For a uniform probability
density, such as would be for spherical particles, PðϑÞ ¼ 1
in both 2D and 3D.
In Fig. 5, we plot PðϑÞ vs ϑ for different asphericities α

at fixed ϕ near ϕð0Þ
J . For each α, we use a _γ sufficiently small

that PðϑÞ has approached its _γ → 0 limiting distribution.
Unlike the uniform distribution for spheres, we see a sharp
peak at ϑ ¼ π=2 whose height steadily increases as α
decreases. Thus, as particles become increasingly spherical,
particle contacts increasingly prefer to form along the
narrowest width of the particle rather than uniformly over
the particle’s surface [33]. The onset of this effect occurs as
ϕ increases above the jamming ϕJ [20]. We note that
similar results for PðϑÞ have been reported [8,34] in static,
isotropically jammed packings, but in that case there is no
nematic ordering and S2 ¼ 0. One possible explanation for
this difference is that it is the anisotropy of the stress in a
sheared system, as manifested by directed force chains, that
determines a particular direction and gives rise to a non-
vanishing S2. Indeed, we find that, for small α close to and
above jamming (but not well below jamming and not for
larger α), the orientation θ2 of the nematic director aligns

with the minimum stress axis of the stress tensor, which is
at 45° with respect to the flow direction x̂.
To examine the role that stress anisotropy plays, we have

carried out preliminary simulations of 2D spherocylinders
under a pure shear, compressing our system in the ŷ
direction while expanding in the x̂ direction, both at
constant rate _γ=2 ¼ 5 × 10−7 so as to keep a constant area.
While simple shear creates a vorticity in the affine velocity
field that drives the continuous rotation of individual
particles (as in our Fig. 3), such vorticity is absent in pure
shear; we thus find h_θii ¼ 0, the nematic director aligns
with the minimal stress axis, and the magnitude S2 is large
at small ϕ, monotonically decreasing as ϕ increases. We
find that S2 from pure shear and simple shear qualitatively
agree only when one is close to or above the jamming ϕJ,
where behavior is likely dominated by extended force
chains that restrict particle alignment. For small α, pure
shear and simple shear differ most at lower ϕ: For pure
shear particles decay to a fixed orientation, giving large S2
and θ2 ¼ 0, while for simple shear particles continuously
rotate, averaging out to a small S2; as ϕ increases, elastic
collisions increase, the rotation slows and becomes more
nonuniform, and S2 increases. The nonmonotonic behavior
of S2 with a peak at ϕmax is thus a direct consequence of the
rotational drive that is present in simple shear but absent in
pure shear. See further details in Ref. [20].
In conclusion, we have considered the athermal uniform

shearing of bidisperse, aspherical particles in 2D and 3D. A
finite particle asphericity α breaks rotational symmetry, and
as in earlier works [10–18] we find a finite nematic
ordering S2. However, one would naively expect that
S2 → 0 as the symmetry-breaking parameter α → 0. In
contrast, here we show that S2 remains finite at jamming
and above even as α → 0. This may be viewed in analogy
with an Ising model, where the magnetizationm stays finite
even as the ordering magnetic field h → 0 for T < Tc.
However, there are two significant differences: (i) In the
Ising model with h → 0, one has m → 0 as T → Tc from
below, while here as α → 0 we find S2 stays finite as ϕ →

ϕð0Þ
J from above; (ii) ordering in the Ising model arises from

a microscopic spin-spin interaction that prefers alignment
even when h ¼ 0, while here the microscopic interaction
that prefers alignment of the particle major axes would
naively seem to vanish as α → 0 and the particles become
spherical [though the behavior of PðϑÞ suggests that a local
ordering interaction may indeed persist even as α → 0].
It would be interesting to see how robust this effect is to

the introduction of additional sources of fluctuation, such
as a polydispersity in α [35], or the presence of thermal
effects. We leave such questions to future research.

Simulations were carried out on resources of the Center
for Integrated Research Computing at the University of
Rochester and of the Swedish National Infrastructure for
Computing (SNIC) at HPC2N. This work was supported in
part by National Science Foundation Grant No. CBET-
1435861.
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