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In this Supplemental Material we provide further de-
tails and tests to demonstrate the correctness of our sim-
ulations. In Sec. I we demonstrate the validity of our
results for the nematic order parameter S2 at our small-
est asphericity, α = 0.001, which is key to our conclusion
that S2 max stays finite as α → 0. In Sec. II we discuss
translational correlations in our system and demonstrate
that there is no smectic ordering into well defined flow-
ing layers. In Sec. III we show that the onset for the
effect that particle contacts to prefer to lie on the nar-
rowest width of the particles, takes place as the packing
φ increases through the jamming transition. In Sec. IV
we consider the effect of a pure shear deformation on 2D
spherocylinders, and contrast with our main results for
simple shear. In Sec. V we provide details on how we de-
termine when two particles are in contact, and compute
the corresponding overlap parameters.

I. VALIDITY OF RESULTS AT α = 0.001

Our argument in the main text, that limα→0[S2 max] =
S0 is finite, relied on the assertion that our data at the
smallest α = 0.001 are reliable. In order to argue con-
versely, i.e., that S2 max vanishes as a power law as α→ 0,
we would have to believe that the value of S2 max at
α = 0.001 that is reported in Fig. 4a of the main text is,
by some artifact of our simulations, larger than it should
be.

Here we provide several tests to support our claim that
our data point at α = 0.001 is indeed correct. Since
our simulations for 2D spherocylinders are considerably
less time consuming than for 3D ellipsoids, we can make
more exacting tests for that case. Hence, here we restrict
ourselves to 2D spherocylinders.

A. Dependence on Shear Strain Rate

As shown in Fig. 1 of the main text, the nematic order
parameter S2 depends on both packing fraction φ and
shear strain rate γ̇. However at each φ, S2 approaches a
limiting value as γ̇ decreases. Here we wish to confirm
that we have simulated at small enough γ̇ so that the
peak value S2 max which we find for α = 0.001 has reached
this γ̇ → 0 limit. In Fig. SM-1a we plot S2 vs φ for our
three smallest strain rates γ̇, using a system with N =

1024 particles. Just as was found in Fig. 1 of the main
text for a larger α, here we see γ̇ dependence remaining
on the large φ side of the peak in S2, however there is no
γ̇ dependence on the low φ side up to, and including, the
peak value. Thus our results of Fig. SM-1a clearly argue
that the value of S2 max will not decrease if γ̇ were made
even smaller.
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FIG. SM-1. Nematic order parameter S2 for α = 0.001 vs
packing fraction φ for (a) three different shear strain rates
γ̇ with N = 1024 particles, and (b) systems with different
numbers of particles N for γ̇ = 4×10−7. Vertical dashed lines
locate the jamming transition of α = 0 spherical particles,

φ
(0)
J = 0.8433.

B. Dependence on System Size

As one approaches the jamming transition, a correla-
tion length diverges. If one is too close to the jamming
transition, finite size effects may become important when
the correlation length becomes larger than the length of
the system. We thus wish to check that our value of
S2 max for α = 0.001 is not affected by such possible fi-
nite system size effects. Our results in the main text are
for systems with N = 1024 particles. In Fig. SM-1b we
plot S2 vs φ at the small strain rate γ̇ = 4× 10−7, using
three different systems sizes with numbers of particles
N = 512, 1024 and 2048. While there is a small depen-
dence on N seen at the largest φ, there is no dependence
on N at lower φ up to and including the peak value. Our
value of S2 max for α = 0.001 thus does not suffer from
finite size effects.
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C. Dependence on Integration Time Step

We should also check if there is any dependence of our
results on the size of the finite numerical integration step
∆t. Our results in the main text used a value ∆t = 0.02t0
with t0 = D2

skd/ke the unit of time. In Fig. SM-2 we
plot S2 vs φ at the small strain rate γ̇ = 4 × 10−7, for
α = 0.001, using three different values of the time step
∆t/t0 = 0.01, 0.02 and 0.04. We see that any differ-
ences between the data from the three different ∆t are
within the estimated statistical error. We conclude that
our integration step of ∆t/t0 = 0.02 is small enough to
accurately determine S2 max for α = 0.001.
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FIG. SM-2. Nematic order parameter S2 for α = 0.001
vs packing fraction φ using different integration time steps
∆t/t0 = 0.01, 0.02 and 0.04. The system is sheared at a strain
rate γ̇ = 4×10−7 and has N = 1024 particles. Vertical dashed
line locates the jamming transition of α = 0 spherical parti-

cles, φ
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D. Equilibration

Finally we demonstrate that the rotational degrees of
freedom in our system are well equilibrated for our sim-
ulations at α = 0.001. When α is small, the small mo-
ment arms of the collisional forces result in small torques,
and, depending on the particle density, it can require long
shear strains for the rotational degrees of freedom of the
system to equilibrate to the proper steady state.

Let us define S2(γ) as the magnitude of the instanta-
neous nematic order parameter of the individual configu-
ration of the system after it has sheared a strain γ = γ̇t.
For an initial configuration of randomly oriented parti-
cles, a system with a finite number of particles N will
have some initial value S2(0). At low densities, where
torque inducing collisions are rare, particles will rotate
primarily under the influence of the dissipative torque.
In this case, since particles with finite α have a non uni-
form angular velocity that depends on their orientation
θi, the relative orientations of the particle spines ˆ̀

i will
vary with γ and hence so will S2. But once the system
has strained so that γ = γ̇T , where T is the period of

rotation of an isolated particle, the particles will have
returned to their initial orientations and S2(γ) will have
returned to its initial value S2(0). We thus expect to see
an oscillating S2(γ) with period γ̇T . We have observed
such behavior for small α at low densities. However,
as the density increases the rate of collisions increases.
These collisions will perturb this oscillatory behavior un-
til, after a sufficiently large strain has been applied, the
particle orientations have lost memory of their initial con-
figuration. The particle orientations will then sample a
stationary steady state distribution. S2(γ) will then be
constant, aside from random fluctuations that we might
expect should decrease as 1/

√
N as the number of parti-

cles N increases.

In Fig. SM-3a we plot S2(γ) vs γ for a shear strain
rate γ̇ = 4 × 10−7 at a packing φ = 0.838 near the
peak in S2, for a system with N = 1024 particles with
α = 0.001. We see that S2(γ) appears, as desired, to
consist of random fluctuations about a constant average.
The dashed horizontal line in Fig. SM-3a is the average
〈S2(γ)〉 = (1/∆γ)

∫ γf
γi
dγ S2(γ), where ∆γ = γf − γi;

we start averaging only after an initial shear strain of
γi = 10 so as to avoid any initial transients, and average
up to a final γf = 150. The solid horizontal line repre-
sents the ensemble average S2, as considered elsewhere
in this work. To be clear, S2(γ) is the largest eigenvalue
of the orientational ordering tensor Tµν(γ) as computed
for the individual configuration at strain γ, while S2 is
the largest eigenvalue of the orientational ordering ten-
sor 〈Tµν〉 averaged over the length of the shearing run
from γ1 to γ2. Since the relation between eigenvalue and
tensor is not linear, these two averages of S2 need not be
equal, and in Fig. SM-3a we see that there is indeed a
small difference. Since the direction of the nematic di-
rector is optimized to give the largest possible S2, and
since the direction of the nematic director obtained from
Tµν(γ) fluctuates as γ varies from configuration to config-
uration (as opposed to the director obtained from 〈Tµν〉
which is fixed), we expect that 〈S2(γ)〉 will be somewhat
larger than S2, and this is indeed what is observed in
Fig. SM-3a. In Fig. SM-3b we plot 〈S2(γ)〉−S2 vs N and
see that this difference is going to zero as N increases.
In the same figure we also plot the standard deviation
σS2(γ) =

√
〈S2

2(γ)〉 − 〈S2(γ)〉2 vs N and see that it also
vanishes as N increases.

Next, we consider the Fourier transform of S2(γ) in
order to check that the frequency spectrum of the fluc-
tuating noise seen in Fig. SM-3a is broad without any
peaks that could indicate vestigial oscillations due to
poor equilibration. Since S2(γ) is plotted in terms of
the dimensionless time γ = γ̇t, in Fig. SM-4 we plot the
Fourier transform F [S2] as a function of the dimension-
less frequency ω/γ̇. We see that the spectrum is indeed
broad with no peaks. The high frequency tail is roughly
power law with an exponent 1.3, however that exponent
changes a bit depending on the range of γ that is used in
the fit.

Lastly we consider a similar analysis of the orientation
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FIG. SM-3. (a) Instantaneous nematic order parameter S2(γ)
vs shear strain γ, for α = 0.001 and shear strain rate γ̇ =
4 × 10−7 at packing fraction φ = 0.838 near the peak value
S2max. The horizontal dashed line is the average over these
instantaneous values 〈S2(γ)〉, while the horizontal solid line
is S2 as obtained from averaging the orientational ordering
tensor over the entire shearing run. The system has N = 1024
particles. (b) Difference 〈S2(γ)〉 − S2 vs number of particles
N , and standard deviation σS2(γ) vs N ; the dashed line is

∼ 1/
√
N for comparison.
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FIG. SM-4. Fourier transform of S2(γ), F [S2], vs dimension-
less frequency ω/γ̇. The high frequency tail is fit to an inverse
power law (dashed line) and gives an exponent ∼ 1.3.

angle θ2 of the nematic director. In Fig. SM-5a we plot
the instantaneous θ2(γ) vs γ for the same parameters as
in Fig. SM-3a, γ̇ = 4 × 10−7, φ = 0.838, α = 0.001. We
see what appear to be random fluctuations about a con-
stant average value. The dashed horizontal line is the
average 〈θ2(γ)〉 = (1/∆γ)

∫ γf
γi
dγ θ2(γ), while the solid

horizontal line is θ2 obtained from the ensemble aver-
aged orientation tensor 〈Tµν〉. In Fig. SM-5b we plot the
Fourier transform F [θ2] vs the dimensionless frequency
ω/γ̇. We see a broad spectrum with a power law tail de-
creasing with an exponent ∼ 1.5 (the exact value of this
exponent is sensitive to the range of data used in the fit).
There are no peaks in F [θ2] to indicate any oscillatory
motion, thus giving support to the assertion in the main
text that, while individual particles tumble with an aver-
age angular velocity 〈ωi〉, there is no coherent tumbling
of the nematic order parameter S2. Our results in this
section thus confirm that our spherocylinder simulations
at α = 0.001 are indeed well equilibrated.
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FIG. SM-5. (a) Instantaneous nematic director angle θ2(γ) vs
shear strain γ, for α = 0.001 and shear strain rate γ̇ = 4×10−7

at packing fraction φ = 0.838 near the peak value S2max. The
horizontal dashed line is the average over these instantaneous
values 〈θ2(γ)〉, while the horizontal solid line is θ2 as obtained
from averaging the orientational ordering tensor over the en-
tire shearing run. The system has N = 1024 particles. (b)
Fourier transform of θ2(γ), F [θ2], vs dimensionless frequency
ω/γ̇. The high frequency tail is fit to an inverse power law
(dashed line) and gives an exponent ∼ 1.5.

II. SPATIAL CORRELATIONS

Since our system has finite nematic orientational or-
der, we wish to check whether there might also be smec-
tic translational order, with particles flowing in well de-
fined layers oriented in the direction of the flow. To test
for this, we measure the following transverse correlation
function of the particle center of mass density n(r). We
first define,

n(y) =
1

∆yLd−1
⊥

∫ y+∆y/2

y−∆y/2

dy′
∫ L⊥

0

dr⊥ n(y′, r⊥). (SM-1)

n(y) is just he number of particles per unit volume whose
center of mass lies in a layer of small width ∆y that
spans the system in the orthogonal directions. For d = 2
dimensions, r⊥ = xx̂ and L⊥ = Lx, the length of the
system in the x̂ direction; for d = 3, r⊥ = xx̂ + zẑ and
L⊥ = Lx = Lz. We then define the correlation

C(y) =
Ld−1
⊥
nLy

∫ Ly

0

dy′
[
〈n(y + y′)n(y′)〉 − 〈n〉2

]
,

(SM-2)
where the prefactor is chosen so that C(y) is independent
of the system size.

We consider first the case of spherocylinders in 2D,
where we average over large total strains γ ≈ 130, thus
allowing for accurate measurements of C(y). For our cal-
culations we use a layer width ∆y = 0.01 for α ≤ 0.01,
and ∆y = 0.025 for larger α. In Fig. SM-6a we plot C(y)
vs y for α = 0, 0.001, and 0.01 at φ = 0.845, which is

just slightly above the jamming φ
(0)
J = 0.8433 for circu-

lar disks. In each case we use the smallest γ̇ we have
simulated at each α, i.e. 10−6, 4 × 10−7 and 4 × 10−7

respectively. We see that the C(y) for these three cases
are almost indistinguishable; there is nothing that signals
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FIG. SM-6. Spatial correlations in the direction of the flow
velocity gradient, C(y) vs y, for 2D spherocylinders. (a) Re-
sults for small α, including α = 0, at the common value of
φ = 0.845, just above the jamming fraction for circular disks,

φ
(0)
J = 0.8433; strain rates γ̇ are as indicated in the figure.

(b) Results for larger values of α, at low strain rates γ̇, just
above their respective jamming fractions φJ(α); values of γ̇
and φ are indicated in the figure.

a singular behavior as α → 0. We see sharp peaks at
y = 1, 1.2, and 1.4, which are the nearest neighbor sep-
arations for just contacting small-small, small-big, and
big-big pairs. At larger y we see oscillations with a pe-
riod of 1.2, the average spacing between contacting par-
ticles. However these oscillations clearly decay to zero as
y increases, thus demonstrating that there is only short
ranged order in the direction of the flow velocity gra-
dient. Fitting the heights of the larger y peaks to an
exponential, we find a decay length between 1 and 2.

In Fig. SM-6b we plot C(y) vs y for larger values of
α, at our lowest strain rate for each case, and at a pack-
ing fraction φ that is slightly above the respective jam-
ming fraction φJ for each α. We again see similar be-
havior: oscillations that decay to zero as y increases. As
α increases, and the particles become increasingly non-
spherical, the sharp peaks near y = 1, 1.2 and 1.4 broaden
and the peaks at y > 2 shift to slightly larger values of y;
results for α = 1 and α = 4 are nearly indistinguishable
for y > 2. However the average spacing between peaks
remains ∼ 1.2 and the decay length remains in the range
1 to 2. We have verified that similar behavior occurs as
either φ or γ̇ is varied. We thus conclude that particles
do not flow in well defined, spatially ordered, layers and
so there is no smectic ordering.

Our 3D simulations are much more time consuming

and we only shear to total strains γ ≈ 1.4, thus greatly
reducing the number of independent samples we have to
average over when computing C(y). To keep statistical
accuracy reasonable, we therefore average over a thicker
(as compared to 2D) layer of width ∆y = 0.18 to define
n(y), so as to have more particles in the layer and so
smaller fluctuations. Our results for the correlations of
3D ellipsoids are shown in Fig. SM-7. While the larger
∆y means we lack the finer scale features seen in Fig. SM-
6 for 2D, we continue to see similar decaying oscillations,
characteristic of the absence of any long range transla-
tional ordering.
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FIG. SM-7. Spatial correlations in the direction of the flow
velocity gradient, C(y) vs y, for 3D ellipsoids. (a) Results for
small α, including α = 0, at strain rate γ̇ = 10−7 and the
common value of φ = 0.654, just above the jamming fraction

for spheres, φ
(0)
J = 0.649. (b) Results for larger values of α, at

strain rates γ̇ = 5×10−7, just above their respective jamming
fractions φJ(α); values of φ are indicated in the figure.

Note, since we use N = 1024 particles in both 2D and
3D, the system length for our 2D systems is L ∼ 37, while
for 3D it is L ∼ 11. Thus in 3D the oscillations in C(y)
have not quite decayed to zero before one reaches y =
L/2, where the periodic boundaries influence our results
and give a larger C(y) than would be found in a larger
system. Nevertheless our results in 3D are consistent
with decaying correlations, and so the absence of any
smectic ordering.

III. CONTACT LOCATION DISTRIBUTION

In the main text we showed in Fig. 5 that the proba-
bility density per unit surface area P(ϑ), for a particle to
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have a contact at polar angle ϑ on its surface, had a sharp
peak at ϑ = π/2, where the particle width is narrowest.
The height of this peak increases as the asphericity α de-
creases. The results for P(ϑ) vs ϑ shown in Fig. 5 were
for a small strain rate γ̇ at a fixed packing fraction near

the jamming transition for spherical particles, φ ≈ φ(0)
J .

In Fig. SM-8 we plot the peak height P(π/2) vs packing
φ at fixed small α, for different values of γ̇. In (a) we show
2D spherocylinders at α = 0.03 and in (b) 3D ellipsoids
at α = 0.05. We see that as γ̇ decreases, P(π/2) increases
to a limiting curve, which rises rapidly as φ approaches

φ
(0)
J , and then stays above the spherical particle value of

unity as φ increases above the jamming transition. Thus
the onset for the contacts to preferentially lie along the
narrowest width of the particle takes place as φ passes
through the jamming transition.
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FIG. SM-8. Peak probability P(π/2) vs packing φ for differ-
ent strain rates γ̇ for (a) 2D spherocylinders at α = 0.03 and
(b) 3D ellipsoids at α = 0.05. As γ̇ decreases, the peak value
P(π/2) increases until it saturates. Vertical dashed lines de-

note the jamming point of spherical particles φ
(0)
J , while hor-

izontal dashed lines indicate the value of unity expected for a
spherical particle.

IV. RESPONSE TO A PURE SHEAR
DEFORMATION

It is interesting to compare the response of our system
to a pure, rather than a simple, shear. For simplicity
we consider this for the case of our 2D spherocylinders.
In this model the dissipative force is determined by the
relative velocity of the particle with respect to an affinely
deformed background host medium. We define the local
velocity vhost(r) of this background host in terms of a

strain rate tensor Γ̇, i.e., vhost = Γ̇ · r. A simple shear
deformation can be decomposed into the sum of a pure
shear and a uniform rotation,

Γ̇ss = Γ̇ps + Γ̇rot. (SM-3)

For our coordinate system with simple shear flow in the
x̂ direction, this becomes,[

0 γ̇
0 0

]
=

[
0 γ̇/2
γ̇/2 0

]
+

[
0 γ̇/2
−γ̇/2 0

]
. (SM-4)

The first term on the right hand side is a pure shear,
with expansion along the (1, 1) diagonal and compression
along the (1,−1) diagonal, both at the rate γ̇/2 so as to
keep the area constant. The second term is a clockwise
rotation (−γ̇/2)ẑ × r, with angular velocity −γ̇/2. It
is this second term which drives the continuous rotation
of particles under simple shear, resulting in the finite
−〈ωzi〉/γ̇ > 0 seen in Fig. 3 of the main text.

Under pure shear there is no such rotational drive, and
particles try to relax from their initial orientation to one
aligned with the expansive direction of the pure shear.
Rotating coordinates so that the expansive direction is x̂
and the compressive direction is ŷ, the rotational equa-
tion of motion for pure shear becomes,

θ̇i = −(γ̇/2)[∆Ii/Ii] sin 2θi + τ el
i /(kdviIi). (SM-5)

For an isolated particle where τ el
i = 0, particles will ex-

ponentially relax to θi = 0 or π with a relaxation time
t0 set by the total strain γ0 = γ̇t0 = Ii/∆Ii. Thus, at
low φ near this isolated particle limit, we expect to find
near perfect nematic ordering with S2 ≈ 1 and θ2 = 0.
However, as the asphericity α of the particles vanishes,
the relaxation time needed to achieve this highly ordered
state diverges as γ̇t0 = (Ii/∆Ii) ∼ 1/α.

To investigate the response to pure shear at dense φ,
we have carried out numerical simulations. A practical
limitation of pure shear simulations is that, unlike for
simple shear, there is a limit to the total strain γ that
can be applied to a finite numerical system before the
system collapses to a narrow height of order one particle
width, Ly(γ) = Ly(0)e−γ/2 ∼ O(1). To increase the total
possible strain γ, we use systems of N = 1024 particles
with an initial system aspect ratio of Ly(0)/Lx(0) = 8,
and shear to a strain γ such that Ly(γ)/Lx(γ) = 1/8,
thus allowing a maximum strain of γ = ln 64 ≈ 4.2. We
use a strain rate γ̇ = 10−6, and average over four inde-
pendently generated samples.
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FIG. SM-9. (a) Magnitude S2 and (b) direction θ2 of the
nematic order parameter vs pure strain γ = γ̇t, at different
packing fractions φ for nearly circular particles with α = 0.001
at strain rate γ̇ = 10−6. A sparse set of symbols is used to
help differentiate curves of different φ, with many data points
existing between adjacent symbols on any curve. Representa-
tive error bars are shown at integer values of γ.

Here we present results for nearly circular particles at
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our smallest α = 0.001. In Fig. SM-9 we plot the nematic
order parameter magnitude S2 and orientation θ2 vs pure
shear strain γ, for several different packing fractions φ.
As γ increases, S2 increases and θ2 decays from its initial
random value to zero, in agreement with the expectation
that particles try to relax to their preferred orientation
aligned with the expansive direction x̂. However we see
that we are only able to reach the desired steady state,
where S2 plateaus to a constant value as γ increases,
for relatively dense systems close to and above jamming,
φ ≥ 0.84.
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FIG. SM-10. Magnitude of the nematic order parameter S2 vs
packing φ, comparing pure shear with simple shear, for nearly
circular particles with α = 0.001. For pure shear the strain
rate is γ̇ = 10−6, while for simple shear γ̇ = 10−7. Results
represent steady state values, except for the pure shear case
at φ = 0.835 where steady-state has not quite been reached;
the value shown at this φ is therefore a lower bound on the
steady state limit.

In Fig. SM-10 we show the resulting steady state values
of S2 vs packing φ, comparing results from simple shear
with those from pure shear. We see dramatically different
behavior at low φ. For simple shear the nearly uniform
rotation of the α = 0.001 particles results in a small S2,
while for pure shear the relaxation to the expansive di-
rection gives a large S2. As φ increases, so does the rate
of particle collisions. For pure shear the collisions and re-
sulting excluded volume inhibit perfect alignment of par-
ticles and S2 decreases. For simple shear the increasing
collisions initially cause the rotation to slow (see Fig. 3a
of the main text) and consequently S2 to increase, but
upon further increasing φ towards φJ and going above,
excluded volume effects similar to that in pure shear pre-
sumably inhibit alignment and cause S2 to decrease, and
we find that S2 for both pure and simple shear become
comparable and behave similarly. The non-monotonic
behavior of S2 in simple shear is thus a consequence of
the rotational drive, present in simple shear but absent
in pure shear. However in both simple and pure shear,
we find that S2 at jamming remains surprisingly large,
even though the particles are extremely close to circu-
lar, with the flat sides of the spherocylinders comprising
only a fraction α/(α+ π/2) = 6.4× 10−4 of the particle
perimeter.

V. DETERMINATION OF CONTACTS AND
OVERLAPS

In this section we summarize how we determine if two
particles are overlapping, and if so, what is the point
of contact between them. For our 2D spherocylinders,
we use the efficient algorithm of Pournin et al. [1] to
compute the shortest distance rij between the spines of
two spherocylinders i and j. The line of length rij that
connects the two spines we will call the line IJ. Whenever
rij < dij = (Di + Dj)/2, with Di the diameter of the
endcap of spherocylinder i, the two spherocylinders are
overlapping. We then define the point of contact rC , at
which the elastic force acts, as the distance [Di/(Di +
Dj)]rij from the spine of spherocylinder i, along the line
IJ.

For our 3D ellipsoids, the procedure is more compli-
cated. As illustrated in Fig. SM-11, for two overlapping
ellipsoids i and j one can define a scale factor δij < 1
such that there exists a unique point of contact rC be-
tween these ellipsoids when their axes are rescaled by
the common factor δij , keeping their center of mass posi-
tions fixed. This scale factor δij can be computed using
a method introduced by Perram and Wertheim (PW) [2]
which has been applied to the study of jammed packings
of ellipsoidal particles [3, 4]. Here we briefly summarize
this method.

For any position r, we define the scale function δi(r)
such that r will lie on the surface of ellipsoid i if its axes
are rescaled by δi(r). We then introduce the contact
function F (r, λ) defined for two ellipsoids i and j,

F (r, λ) = λδ2
i (r) + (1− λ)δ2

j (r), (SM-6)

where λ ∈ [0, 1]. It has then been demonstrated [2] that
there exists an r(λ) such that

∇F (r(λ), λ) = 0, (SM-7)

where ∇ ≡ ∂/∂r. This implies that

λ∇δ2
i (r(λ)) = −(1− λ)∇δ2

j (r(λ)), (SM-8)

which shows that when ellipsoids i and j are rescaled
by factors δi(r(λ)) and δj(r(λ)) respectively, the point
r(λ) lies on the surfaces of both ellipsoids, and the nor-
mal vectors to the surfaces at this point are parallel but
pointing in opposite directions, so that the two ellipsoids
are tangent at r(λ).

PW further showed [2] that F (r(λ), λ), as a function
of λ ∈ [0, 1], has a unique maximum at λ∗, such that

0 =
dF (r(λ), λ)

dλ

∣∣∣∣
λ=λ∗

=
∂F (r(λ), λ)

∂λ

∣∣∣∣
λ=λ∗

+ r(λ∗) ·∇F (r(λ∗), λ∗),

(SM-9)

where the second term vanishes due to Eq. (SM-7). From
Eq. (SM-6) we then find δ2

i (r(λ∗)) = δ2
j (r(λ∗)), which
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ri
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FIG. SM-11. Solid lines denote two overlapping ellipsoids
i and j, with centers ri and rj respectively; the overlap is
exaggerated over what is found in the actual simulations for
the sake of clarity. Dashed lines show the same two ellipsoids
when their axes are rescaled by a common factor δij , so that
they now have a single point of contact at rC .

means that the scale factor is the same for both ellipsoids,
and

δ2
i (r(λ∗)) = δ2

j (r(λ∗)) = F (r(λ∗), λ∗). (SM-10)

The scale factor δij that we are seeking is thus defined as

δ2
ij = max

λ∈[0,1]
[F (r(λ), λ)]. (SM-11)

With this notation, we define the point of contact be-
tween ellipsoids i and j as rC = r(λ∗). It is thus the
unique point common to ellipsoids i and j when both are
rescaled with a common factor δij .

To compute the scale factor δij defined in Eq. (SM-11),
we use a method derived from Ref. [4]. An ellipsoid i is
defined by its center of mass position ri, the lengths of its
axes (a1, a2, a3), and the rotation matrix Qi that rotates
the (x, y, z) directions of the lab coordinate frame onto
the principal axes of the ellispoid. We then introduce the
matrix,

Bi = Qi ·

a−2
1 0 0
0 a−2

2 0
0 0 a−2

3

 ·Q−1
i , (SM-12)

which is symmetric due to the orthogonal nature of Qi,
and gives an explicit definition of the scale function δi(r),

δ2
i (r) = (r− ri) ·Bi · (r− ri). (SM-13)

Eq. (SM-8) then becomes

λBi · (r(λ)− ri) = −(1− λ)Bj · (r(λ)− rj). (SM-14)

After introducing [2]

Yij(λ) = λB−1
j + (1− λ)B−1

i ,
and defining rji = rj − ri, Eq. (SM-14) gives expressions
for the distances between the contact point r(λ) and the
centers of the ellipsoids,

r(λ)− ri = (1− λ)B−1
i ·Y

−1
ij (λ) · rji,

r(λ)− rj = −λB−1
j ·Y

−1
ij (λ) · rji.

(SM-15)

As discussed above, the unique contact point rC for equal
scale factors, δij = δi(rC) = δj(rC), is found by maxi-
mizing the contact function F (r(λ), λ) with respect to λ.
Using the above results and Eq. (SM-13) in Eq. (SM-6)
thus gives,

F (r(λ), λ) = λ(1− λ)rji ·Y−1
ij (λ) · rji

=
λ(1− λ)rji · adj[Yij(λ)] · rji

det[Yij(λ)]
(SM-16)

≡ pij(λ)

qij(λ)
,

where adj[. . .] denotes the adjugate matrix (whose ele-
ment (α, β) is equal to the determinant of the 2× 2 sub-
matrix obtained after eliminating row β and column α
from the original 3× 3 matrix), and det[. . .] denotes the
determinant. The functions pij(λ) and qij(λ) are poly-
nomials in λ of degree 4 and 3 respectively.

The desired parameter λ∗, at which F (r(λ), λ) is max-
imized, is then the unique root in the interval [0, 1] of the
6th degree polynomial

hij(λ) = p′ij(λ)qij(λ)− pij(λ)q′ij(λ), (SM-17)

i.e., hij(λ
∗) = 0, where primes above denote derivatives

with respect to λ.
Finally, to determine ellipsoid elastic interactions, we

investigate all pairs of ellipsoids whose center of mass
separation |ri − rj | is small enough that the ellipsoids
might be overlapping. We then apply the above proce-
dure to determine δij . If the resulting δij > 1, then the
pair of ellipsoids are in fact not overlapping and so have
no interaction. If δij ≤ 1, then the ellipsoids overlap and
the point of contact is taken as rC .
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