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Collections of bidisperse frictionless particles at zero temperature in three dimensions are simulated with
a shear-driven dynamics with the aim to compare with the behavior in two dimensions. Contrary to the
prevailing picture, and in contrast to results from isotropic jamming from compression or quench, we find
that the critical exponents in three dimensions are different from those in two dimensions and conclude that
shear-driven jamming in two and three dimensions belong to different universality classes.
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Introduction.—A system of granular particles at zero
temperature with contact-only interactions undergoes a
jamming transition, which is a transition from a liquid to
a disordered solid, at a critical packing fraction ϕJ. As this
is a phenomenon at zero temperature, there is no thermal
equilibrium and it turns out that details of the jamming
transition depend on the physical protocol by which the
system jams; isotropic jamming and shear-driven jamming
thus appear to be different phenomena.
Isotropic jamming results when the system is either

compressed isotropically [1–4] or when it is rapidly
quenched from T ¼ ∞ to T ¼ 0 at a fixed volume
[3,5,6]. In both cases the resulting jammed state has (in
principle) an isotropic stress tensor. When compressed the
particle packing ϕ is increased by slowly and isotropically
compressing a system. As ϕ increases, particles come into
contact with each other, at ϕJ a mechanically stable rigid
backbone of particles percolates across the system, and the
system jams. The precise value of ϕJ varies somewhat with
the details of the protocol for compressing or quenching
[3,7], as properties of the starting configurations and the
rate of compression or quench.
In shear-driven jamming of frictionless particles the

system is sheared at a constant volume with a uniform
shear strain rate _γ. Below ϕJ—the jamming density of the
shear-driven jamming transition, which is independent of
the initial configuration—the system behaves as a liquid
with a finite viscosity, lim_γ→0ðσ=_γÞ, where σ is the shear
stress. Above ϕJ a finite yield stress develops, lim_γ→0σ > 0.
Early numerical simulations in 2D and 3D led to the

conclusion that the critical exponents associated with
isotropic jamming are independent of the dimensionality
of the system [6]. More recently it has been demonstrated
numerically that key nontrivial critical exponents for
isotropic jamming agree quite well [8–10] with the values
predicted analytically from an infinite-dimensional mean-
field theory [11,12]. This observation has supported earlier
claims that the upper critical dimension for isotropic
jamming is du ¼ 2 [13,14], and that mean-field results
apply for any d > du. The prevailing view has been that the

same should be true for shear-driven jamming [15], and
theoretical models have been constructed that try to relate
the critical exponents for shear-driven jamming to the
mean-field values appropriate to isotropic jamming
[15,16]. In this Letter, we argue that this prevailing view
is incorrect. By extensive numerical simulations, and a
carefully quantitative analysis of the critical behavior, we
show that the exponent associated with the diverging
viscosity below ϕJ is clearly different in 2D and 3D, thus
demonstrating that shear-driven jamming in physical
dimensions cannot be considered a mean-field transition.
The expectation that shear-driven jamming in two and

three dimensions should behave the same seems to be taken
over from the above-mentioned dimension independence
found for isotropic jamming, together with the common
result that weakly driven systems may be considered to be
small perturbations about configurations in the absence of
driving. This is however not applicable in the present
situation since the shearing may never be considered to be a
small perturbation. One way to see this is by considering
the dimensionless friction at criticality which is μ≡ σ=p ≈
0.1 [17] (where p is pressure), which means that the system
is highly anisotropic even in the limit of weak driving. A
situation when linear response is applicable is in shearing
simulations at finite temperatures and small _γ=T [18], but it
is then found that linear response is applicable only as long
as the system is close to isotropic, σ=p < 0.01.
Several attempts have been made to determine the

critical behavior of shear-driven jamming [15,17,19–26].
We here briefly review a few these methods. The first is to
determine shear stress, σðϕ; _γÞ, or pressure, pðϕ; _γÞ, from
shear-driven simulations of soft disks at different densities
and shear strain rates and make use of a scaling relation,
described below [19,25], to try to extract the behavior in the
_γ → 0 limit. With the pressure-equivalent of the shear
viscosity, ηp ∼ p=_γ, the divergence at the jamming density
ϕJ is governed by the exponent β,

ηpðϕ; _γ → 0Þ ∼ ðϕJ − ϕÞ−β: ð1Þ
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Since the particle overlaps get smaller for smaller _γ, the
limit _γ → 0 is the hard particle limit.
Another way to approach criticality is by doing shearing

simulations with hard particles [17]. Since hard frictionless
particles jam when the contact number is equal to z ¼ zc ¼
2d (when z is determined after removing the rattlers from the
system) the idea is to determine how ηp diverges as zc is
approached. With zc − z ∼ ðϕJ − ϕÞuz Eq. (1) becomes

ηp ∼ ðzc − zÞ−β=uz : ð2Þ

The advantage of this expression over Eq. (1) is that zc is
known whereas ϕJ in Eq. (1) is unknown and has to be
determined from the fitting together with the exponent.
Equation (2) therefore opens up amore direct analysis by just
plotting ηp vs δz≡ zc − z.
For comparing determinations of β and β=uz one needs a

value for uz, which in Ref. [21] was found to be uz ¼ 1.
This determination was however done without first remov-
ing the rattlers, and the precision has also been questioned
[15]. Turning things the other way around, uz in 2D may be
determined from β ¼ 2.70� 0.15 from the scaling analysis
[25,27] and β=uz ¼ 2.69� 0.03 [28] (also shown in
Fig. 1), which gives uz ¼ 0.996� 0.057. Here and
throughout the Letter, the quoted errors are maximum or
minimum values, three standard deviations, whereas the
error bars in the figures are � one standard deviation.
The essence of the shear-driven jamming transition is the

slowing down of the dynamics, and the characterization of
this dynamics is the idea behind a different but related
method to study the jamming transition. In this method the
ordinary shearing at a fixed _γ is suddenly stopped and
the system is made to relax to vanishing energy [28]. From
the exponential relaxations one determines the relaxation
time τ while one measures δz from the final configuration
after removing the rattling particles. (Note that this relax-
ation time is not the same as the relaxation time, commonly
determined in steady state or at equilibrium, which is
obtained from the self-part of the intermediate scattering

function [29].) It turns out that τ determined from such
relaxations behaves the same as ηp [17,28] and we have

τ ∼ ðδzÞ−β=uz : ð3Þ

The present Letter relies on shearing simulations of soft
elastic particles and presents two independent determina-
tions of the criticality: an analysis of the relaxation time and
a scaling analysis of the pressure. The Supplemental
Material [30] gives more details on this scaling analysis
of p.
Models and simulations.—For the simulations, we fol-

low O’Hern et al. [6] and use a simple model of bidisperse
frictionless soft particles—disks or balls—in two and three
dimensions with equal numbers of particles with two
different radii in the ratio 1.4. Length is measured in units
of the diameter of the small particles, ds. We use Lees-
Edwards boundary conditions [31] to introduce a time-
dependent shear strain γ ¼ t_γ. We define the nonaffine
velocity, vi ¼ _ri − vaffðriÞ, obtained by subtracting off the
uniform shear velocity vaffðriÞ≡ _γyix̂ from the particle
center of mass velocity _ri. With rij the distance between
the centers of two particles and dij the sum of their radii,
the relative overlap is δij ¼ 1 − rij=dij and the interaction
between overlapping particles is VðrijÞ ¼ ϵδ2ij=2; we
take ϵ ¼ 1. The force on particle i from particle j is
felij ¼ −∇iVðrijÞ. The simulations are performed at zero
temperature.
We consider the interaction force feli ¼ P

jf
el
ij where the

sum extends over all particles j in contact with i. The
simulations discussed here have been done with the RD0

(reservoir dissipation) model with the dissipating force
fdisi ¼ −kdvi [32]. In the overdamped limit the equation of
motion is feli þ fdisi ¼ 0, which becomes vi ¼ feli =kd. We
take kd ¼ 1=2 and the time unit τ0 ¼ d2skd=ϵ ¼ 1=2. The
equations of motion were integrated with the Heuns
method with time step Δt=τ0 ¼ 0.4. We simulate with N ¼
65536 particles and shear strain rates down to _γτ0 ¼ 10−8.
To check for finite size effects we have done additional
simulations for N ¼ 1024 and N ¼ 4096, presented in the
Supplemental Material [30], which lead us to conclude that
our data with N ¼ 65536 should not be affected by finite
size effects.
Beside the ordinary simulations at constant shear strain

rates, we do two-step simulations where the constant
shearing is suddenly stopped but the dynamics is contin-
ued, such that the systems relax to vanishing energy. From
the exponential relaxations of p we determine the relax-
ation times τ, and from the final configurations we
determine the contact number z, after first removing the
rattlers. The values of τ and δz≡ zc − z from these
relaxations will spread around averages that depend on
both ϕ and the initial _γ. It does however turn out when
plotting points parametrically as τ vs δz, the points fall on a
single common curve independent of the starting

FIG. 1. Relaxation time vs distance to the transition as
measured by δz≡ zc − z. The figure shows results for both
2D and 3D and gives strong evidence that the exponents β=uz,
given by the slopes at small δz in 3D and 2D, are different.
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parameters [28]. This observation may be rationalized by
considering that the final steps of the relaxation is probing
the hard particle limit in which the dynamics is controlled
by the properties of the contact network only, and thereby
by the distance to jamming as measured by δz.
Results.—Our key result is summarized by Fig. 1 where τ

vs δz in both two and three dimensions are shown by solid
dots and open circles, respectively. The 2D data are from
Ref. [28]. As always in the determination of critical
exponents, we are interested in the data closest to criticality,
i.e., at small δz; we note that the slopes at small δz in Fig. 1
are clearly different. Fitting data with δz < 0.08 to Eq. (2)
gives the exponent β=uz ¼ 3.35� 0.12 in 3D, clearly
different from β=uz ¼ 2.69� 0.03 in 2D [28]. This is
therefore strong evidence that shear-driven jamming in 3D
and 2D belong to different universality classes. A more
careful determination of the 3D exponent is given below.
Scaling analysis.—For a more detailed characterization

of the critical behavior we turn to a scaling analysis of
pðϕ; _γÞ. Following Ref. [25] the starting point is the scaling
assumption below, where the second term gives the leading
corrections to scaling,

pðδϕ; _γÞ ¼ b−y=ν½fðδϕb1=ν; _γbzÞ þ b−ωgðδϕb1=ν; _γbzÞ�:
ð4Þ

Here b is a length rescaling factor, f and g are scaling
functions, ν is the correlation length exponent, z is the
dynamical critical exponent, y is the scaling dimension of
p, and ω is the correction-to-scaling exponent. Choosing b
so that _γbz ¼ 1, and with q ¼ y=zν, this becomes

pðδϕ; _γÞ ¼ _γq
�
fp

�
δϕ

_γ1=zν

�
þ _γω=zgp

�
δϕ

_γ1=zν

��
: ð5Þ

In the scaling analyses we take fp and gp to be exponentials
of sixth and third order polynomials in δϕ=_γ1=zν, respec-
tively. The data used for the fits are for shear rates _γτ0 ¼
10−8 through 5 × 10−5. More details are given in the
Supplemental Material [30].
We start out by neglecting the corrections-to-scaling

term and fitting to the simpler expression,

pðδϕ; _γÞ ¼ _γqfp

�
δϕ

_γ1=zν

�
: ð6Þ

We then adjust ϕJ, q, zν, and the coefficients of the
polynomial for fp, to get the best possible fit. We do
these fits with different ranges of _γ, taking _γmin ≤ _γ ≤ _γmax
with _γminτ0 ¼ 10−8 and _γmaxτ0 ¼ 2.5 × 10−7 through
5 × 10−5, shown by solid dots in Fig. 2. From the quality
of the fits in panel (a) it is clear that these fits are good only
when the data are restricted to very low shear rates.
We then include corrections to scaling by fitting to the full

expression, Eq. (5), taking ω=z and the coefficients of gp as

additional free parameters. We conclude that the fit with
_γmaxτ0 ¼ 10−5 gives reliable results by considering the
quality of the fits together with the (weak) dependence
on _γmax. We thus estimate β ¼ ð1 − qÞzν ¼ 3.82� 0.28,
ϕJ ¼ 0.6491� 0.0003, q¼ 0.233�0.016, 1=zν ¼ 0.200�
0.011, y ¼ 1.16� 0.03, and ω=z ¼ 0.30� 0.06 (� three
standard deviations). The errors are estimated with
Jackknife resampling. The value β ≈ 3.8 in 3D is thus
clearly different from the 2D value β ≈ 2.7 [25,27].
Corrections in the analysis of τ.—Due to the curvature of

τ vs δz in 2D [28] it was found important to only make use
of data for small δz in the determination of β=uz [28]. It was
then found (not shown) that the determined β=uz increases
as the range of δz decreases down to ðδzÞmax ¼ 0.08, but
then stays stable. Decreasing ðδzÞmax further only increases
the statistical errors.
The analysis of the 3D data in Fig. 1 was similarly done

by fitting to Eq. (3) with ðδzÞmax ¼ 0.08, and was indeed
sufficient for demonstrating that this exponent is different
in 3D compared to 2D. To check for the robustness of this
determination, the lower left part of Fig. 3(a) shows β=uz vs
ðδzÞmax for the 3D data. In contrast to the behavior in 2D,
these data do not clearly saturate but rather gives evidence
for a trend to larger β=uz as ðδzÞmax decreases. The value
β=uz ¼ 3.35 from Fig. 1 now only appears as a
lower bound.
To try to get a better determination of the 3D exponent

we now start from the assumption that the curvature in τ vs
δz is related to corrections to scaling. By constructing a

(a) (b)

(c) (d)

FIG. 2. Results from scaling analyses of the pressure. Shown
here are (a) the quality of the fits in terms of χ2=DOF, (b) the
exponent β, (c) ϕJ , and, (d) 1=zν. All quantities are plotted
against _γmax to examine whether the fittings are stable against a
changing range of shear rates, which would be a requirement for a
good fit. The solid dots are from fitting to the simple Eq. (6)
without corrections to scaling, whereas open circles are from
fitting to the full Eq. (5). The simple fits (solid dots) are clearly
unsatisfactory as they give bad quality fits and fitting parameters
that vary strongly with _γmax.
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scaling expression for p=_γ from Eq. (4), taking
ð−δϕÞb1=ν ¼ 1 and δz ∼ ð−δϕÞuz , and noting that
τðϕ; _γ → 0Þ ∼ pðϕ; _γ → 0Þ=_γ [28] one arrives at

τðδϕÞ ¼ ðδzÞ−β=uz ½f0 þ ðδzÞων=uzg0�; ð7Þ

which is Eq. (3) with a correction term. Similarly to the
scaling analysis that was done for different _γmax, we fit our
data with τ vs δz to Eq. (7) for δz ≤ ðδzÞmax. As shown in
Fig. 3(a), decreasing the range of data from ðδzÞmax ¼ 0.48
through 0.24 gives evidence for trends in both β=uz and
ων=uz, which appear to saturate at ðδzÞmax ¼ 0.30. We
therefore read off β=uz ¼ 3.7� 0.7. Since we find numeri-
cally that β from p is equal to β=uz from τ, we conclude
uz ≈ 1 in 3D, in agreement with the above-mentioned
uz ≈ 1 in 2D.
Comparison with the literature.—Evidence for differing

exponents in two and three dimensions has actually for
some time been available in the literature. The first
determinations of β=uz (there denoted by 1=δ) in
Ref. [17], gave β=uz ¼ 1=0.38 ¼ 2.63 in 2D and β=uz ¼
1=0.34 ¼ 2.94 in 3D. Those authors, however, did not
consider this a significant difference. The main source of
uncertainty in these analyses is whether the data are
sufficiently close to criticality to give the true critical
behavior. In a later paper by the same group [15],
simulations closer to criticality—i.e., at smaller δz—gave
β=uz ¼ 1=0.3 ≈ 3.3 in 3D, but, as that paper was focused
on comparisons with theory, they didn’t comment on
possible differences between two and three dimensions.
Their values do however agree nicely with our analyses
in Fig. 1.
As shown in Fig. 2(b), a simple scaling analysis without

corrections to scaling that includes data from large values of
_γ gives β ≈ 2.9, close to the 2D value, seemingly confirm-
ing the prevailing paradigm. The bad quality of the fit,
however, makes clear that these values cannot be correct.
Another example of a low value in the literature is β ≈
1=0.391 ¼ 2.56 [26]. This, again, appears to be an effect of

using data too far from criticality, as the fits, according to
their Fig. 4(a), include points for densities down to, or
below, ϕ ≈ ϕJ − 0.05. To compare, the data used in the
scaling analyses in the present Letter are restricted
to jϕ − ϕJj ≤ 0.017.
Discussion.—Recent attempts by the group of Wyart to

determine the exponents analytically, in terms of the
exponent θe, rely on examining the properties of the
opening and closing of contacts [15,16]. The exponent
θe characterizes the distribution of weak forces in packings
from isotropic jamming and has been found to be θe ≈
0.42311 by analytic calculations in infinite dimensions
[11,12]. It is also found to be the same in 2D and 3D
[8–10], and it is believed [15] to be the same also in the
shear-driven case.
The result of the present Letter, that critical exponents for

shear-driven jamming are different for 3D compared to 2D,
is however in conflict with a picture where the exponents
only depend on the dimension-independent exponent θe.
One possible reason for this difference could be that their
relations [15,16] describe the typical particle motion
whereas the dissipation (and the viscosity) is instead
dominated by a small fraction of particles with the highest
velocity, and that this fraction decreases as jamming is
approached [33]. The investigation into this issue as well as
determinations of θe in shearing simulations for direct
comparisons with theory appear as important directions for
future work.
Conclusion.—From shear-driven simulations of elastic

particles in three dimensions together with previous results
for two dimensions, we determine the critical exponents of
shear-driven jamming of frictionless athermal particles,
with two different methods, and conclude—in variance
with the prevailing picture—that the 3D and 2D transitions
do not belong to the same universality class.
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