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FIG. S1. Finite size study. Pressure vs shear strain rate at
densities φ = 0.648 and φ = 0.650, around φJ ≈ 0.6491 for
the three different numbers of particles N = 1024, N = 4096,
and N = 65536. To make the small differences visible the
data are shown as p/γ̇q with q = 0.233, to get a quantity
that is almost constant. This comparison gives at hand that
finite size effects for N = 65536 should be negligible down to
γ̇τ0 = 10−8.

I. FINITE SIZE CHECK

Since our interest is in the behavior of large (infinite)
systems it is important to check that the finite size effects
in our system with N = 65536 particles are negligible. To
that end we have run some simulations with two different
smaller number of particles, N = 1024 and N = 4096, to
see at which shear rates finite size effects set in for these
N . The data, obtained at φ = 0.648 and φ = 0.650,
around φJ ≈ 0.6491, are shown as p/γ̇q in Fig. S1. The
finite size effect becomes visible at low shear rates only,
and for our two system sizes we find that the data for
N = 1024 and N = 4096 appear reliable down to γ̇τ0 ≈

10−5 and γ̇τ0 ≈ 10−7, respectively. Though it is not
obvious how to extrapolate such results to N = 65536,
it appears clear that our data for N = 65536 should not
be at all affected by the finite size effects, down to our
lowest γ̇τ0 = 10−8.

II. SCALING ANALYSES OF PRESSURE

The point with this section is to give some details on
the scaling analyses, presented in the Letter.
Fig. S2 shows the raw data as ηp ≡ p/(γ̇kd) vs φ for

shear rates γ̇τ0 = 10−8 through 5 × 10−5. The data
are shown for several different shear strain rates, and
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FIG. S2. Data used in the scaling analyses as ηp ≡ p/(γ̇kd).
These data are for parameters that obey the conditions
0.632 ≤ φ ≤ 0.666 and |X| < 0.2, where X = (φ −
0.6491)/γ̇0.205 . Also shown is the divergence ∼ (φJ − φ)−β

with β and φJ from the scaling analysis with γ̇maxτ0 = 10−5.
Some of the results from scaling analyses with different γ̇max

are shown in Fig. 2.

approach the dashed line, given by ∼ (φJ − φ)−β , as
γ̇ → 0.
For a simple scaling analysis without corrections to

scaling, the value of φJ and two exponents would be
enough to make the data collapse to a common curve.
In the present case, where corrections to scaling cannot
be neglected, it follows from Eq. (5) that it becomes nec-
essary to subtract off the correction term to obtain a data
collapse. This data collapse is shown in Fig. S3(a). One
way to assess the quality of the fit is by measuring
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where Npts is the number of data points, Npar is the
number of free parameters in the fit (which is hereNpar =
15), fscale(φi, γ̇i) is the right hand side of Eq. (5), and
δp(φi, γ̇i) is the estimated statistical uncertainty. Our fit
with γ̇max = 10−5 has χ2/DOF = 1.34.
Another way examine the fit is by looking at the de-

viations from the scaling function. However, since these
deviations are much too small to be visible in Fig. S3(a),
panel (b) instead show the residuals, the quantity inside
the big parenthesis in Eq. (S1). If the fit is good the
residuals should be independent random variables; clear
correlations in the residuals would instead be signs of a
questionable fit. Fig. S3(b) shows these residuals, shifted
vertically according to shear rate, to improve the visibil-
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FIG. S3. Scaling collapse after fitting to Eq. (5). Panel (a)

shows the collapse of the data, plotted as p/γ̇q − γ̇ω/zgp(x),

on the function fp(x), where x ≡ δφ/γ̇1/zν . Panel (b) shows
the residuals, normalized by the estimated statistical uncer-
tainties, shifted vertically, according to shear rate, for bet-
ter visibility. The points spread around the scaling function
without any clear correlations between points at neighboring
densities, as expected for a good fit of the data to the scaling
function.

ity. The absence of any clear correlations between the
residuals in these curves, suggest that the data do in-
deed fit well to the scaling function.


