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TRANSVERSE VELOCITY CORRELATION

FUNCTION

The one quantity for which models RD0 and CD0

are clearly different is the transverse velocity correlation
function, gy(x) ≡ 〈vy(0)vy(x)〉. Defining the normalized
correlation, Gy(x) ≡ gy(x)/gy(0), we plot in Fig. 1(a)
Gy(x) vs x, for several different values of strain rate γ̇, for
model RD0 at φ = 0.8433 ≈ φJ in a system of N = 4096
particles. We see that Gy(x) has a clear minimum at a
distance x = ℓ, and that ℓ increases as γ̇ → 0 and one ap-
proaches the critical point. In Ref. [1] ℓ was interpreted
as the diverging correlation length ξ. In CD0 however, it
was found [2] that Gy(x) decreases monotonically with-
out any obvious strong dependence on either φ or γ̇. In
Fig. 1(b) we plot Gy(x) vs x, for several different γ̇, at
φ = 0.8433 ≈ φJ in a system of N = 4096 particles,
confirming this result.
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FIG. 1. Normalized transverse velocity correlation function
Gy(x) = gy(x)/gy(0) at φ = 0.8433 ≈ φJ for a system of
N = 4096 particles. Panel (a) is for model RD0 with shear
rates γ̇ = 10−7 through 10−4. Panel (b) for model CD0 at
shear rates γ̇ = 10−6, through 10−4.

As an alternative way to consider the difference in
this correlation between the two models, we now con-
sider the Fourier transformed correlation gy(kx) =∫
dx gy(x)e

ikxx, which we show in Figs. 2(a) and 2(b)
for RD0 and CD0 respectively at packing fraction φ =
0.8433 ≈ φJ . For RD0 we see a maximum in gy(kx)
at a k∗x that decreases for decreasing γ̇; ℓ ∼ 1/k∗x gives
the corresponding minimum of the real-space correlation.
For CD0 we show results only for the single strain rate
γ̇ = 10−6 since from Fig. 1(a) we expect no observable
difference as γ̇ varies. We see an algebraic divergence
gy(kx) ∼ k−1.3

x as kx → 0. It is this algebraic divergence
that causes the real space Gy(x) in CD0 to become solely
a function of x/L as the system length L increases, as was
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FIG. 2. Fourier transform of the transverse velocity corre-
lation function gy(kx) at φ = 0.8433 ≈ φJ . Panel (a) is
for model RD0 with shear rates γ̇ = 10−8 through 10−5.
The peak in gy(kx), moving to smaller kx as γ̇ decreases,
is related to the minimum in the real space gy(x) moving to
larger x. The algebraic behavior in panel (b) for model CD0

at γ̇ = 10−6, is consistent with the absence of any apparent
length scale, as reported in Ref. [2]. The number of particles
in these figures are N = 262144 except for the two smallest
shear rates for RD0 for which N = 65536.

reported in Ref. [2].
To try and give a qualitative understanding of this

differing behavior of gy(kx), we can consider how en-
ergy is dissipated in each model. In RD0 the dissipa-
tion is (1/N)

∑
i〈|δvi|

2〉 ≈
∫
dk〈δv(k) · δv(−k)〉. For

CD0, however, the dissipation is (1/N)
∑

i,j〈|vi−vj |
2〉 ≈∫

dk〈δv(k) · δv(−k)〉|k|2 , where the sum is over only
neighboring particles i, j in contact. Here δv is the
non-affine part of the particle velocity. If we make an
equipartition-like ansatz, and assume that as k → 0
all modes k, and both spatial directions x, y, con-
tribute equally to the dissipation, we would then con-
clude that for RD0 〈vy(k)vy(−k)〉 ∝ constant, while
for CD0 〈vy(k)vy(−k)〉 ∝ 1/k2. Noting that gy(kx) =∫
dky〈vy(k)vy(−k)〉, we then conclude that for RD0 we

have g(kx) ∝ constant as kx → 0, while for CD0 we
have the divergence g(kx) ∝ 1/kx. This saturation of
gy(kx) for RD0, as compared to the algebraic divergence
of gy(kx) for CD0, is what is qualitatively seen in Fig. 2.
The physical reason for this dramatic difference can be

viewed as follows. For CD0, since the dissipation depends
only on velocity differences, uniform translation of a large
cluster of particles with respect to the ensemble average
flow has little cost, thus enabling long wavelength fluc-
tuations. For RD0 the dissipation is with respect to a
fixed background, so uniform translation of a large clus-
ter causes dissipation that scales with the cluster size;
long wavelength fluctuations are suppressed.
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That the observed divergence in CD0 is ∼ k−1.3
x rather

than the simple k−1

x predicted above, suggests that our
equipartition ansatz is not quite correct, and that the
different modes interact in a non-trivial way. That the
exponent of this divergence is not an integer or simple ra-
tional fraction suggests the signature of underlying criti-
cal fluctuations, even though the correlation gy(x) itself
does not yield any obvious diverging length scale.

FINITE-SIZE-SCALING OF PRESSURE

In Fig. 1 of the main article we showed data for the
dependence of pressure p on system size L at different
strain rates γ̇, at the jamming fraction φJ ≈ 0.8433. We
argued that these results provided evidence for a simi-
lar growing, macroscopically large, correlation length ξ
in both models RD0 and CR0. Here we attempt a finite-
size-scaling analysis of this data. We must note at the
outset, however, that our earlier work [3] demonstrated
that it is important to consider corrections-to-scaling to
get accurate values for the exponents at criticality, and
that corrections-to-scaling are in fact large at the smaller
sizes L considered in Fig. 1 of the main article [4]. Since
our data for p(L) is not extensive enough to try a scal-
ing analysis including corrections-to-scaling, our results
based on a fit to Eq. (5) must be viewed as providing only
effective exponents describing the data over the range of
parameters considered, rather than the true exponents
asymptotically close to criticality. We restate Eq. (5),

p(φJ , γ̇, L) = L−y/ν P(0, γ̇Lz). (1)

We can equivalently write the above in the form

p(φJ , γ̇, L) = γ̇y/zνf(Lγ̇1/z), (2)

using f(x) ≡ x−y/ν P(0, xz). We can now adjust the
parameters q ≡ y/zν and z to try and collapse the data
to a single common scaling curve. Plotting p/γ̇q vs Lγ̇1/z

we show the results for RD0 and CD0 in Figs. 3(a) and
(b). For RD0 we find the effective exponents z = 6.5
and q = 0.290, while for CD0 we find z = 6.0 and q =
0.317. The values of z found in the present analysis are
comparable to the value z = 5.6 found in the cruder
analysis in Fig. 1(b) of the main article. Note that for
both models the scaling function f(x) → constant as x →
∞, which gives p ∼ γ̇q, q ≡ y/zν, in the limit of an
infinite sized system.
The closeness of these fitted effective exponents for the

two models is one more piece of evidence that RD0 and
CD0 behave qualitatively the same, and do not have dra-
matically different rheology as was claimed by Tighe et
al. in Ref. [2].
Finally we consider how the effective exponents found

here compare to the true exponents asymptotically close
to criticality. From our most accurate analysis [3] of

1 10
0.0

0.2

0.4

γ̇ = 10−8

γ̇ = 10−7

γ̇ = 10−6

γ̇ = 10−5

γ̇ = 10−4

RD0, φ = 0.8433 (a)

L/γ̇−1/z, z = 6.5

p/
γ̇
q
,

q
=
0.
29
0

1 10
0.0

0.2

0.4

γ̇ = 10−7

γ̇ = 10−6

γ̇ = 10−5

γ̇ = 10−4

CD0, φ = 0.8433 (b)

L/γ̇−1/z, z = 6

p/
γ̇
q
,

q
=
0.
31
7

FIG. 3. Scaling collapse of pressure according to Eq. (2) for
models RD0 and CD0.

the critical behavior in RD0, using a large system size
N = 65536 and including the leading corrections-to-
scaling, we have found the critical exponents q = y/zν =
0.28± 0.02 and y = 1.08± 0.03, yielding zν = 3.9± 0.4.
This value of q is in reasonable agreement with that found
above from the finite-size-scaling analysis of p(φJ , γ̇, L).
If we take the value of z ≈ 6 found in the finite-size-
scaling analysis, we would then conclude ν ≈ 0.65. We
note that earlier scaling analyses [1, 5] that similarly ig-
nored corrections-to-scaling found similar values for ν.
However our recent [4] more detailed finite-size-scaling
analysis of the correlation length exponent, which in-
cluded corrections-to-scaling, found that ν ≈ 1, there-
fore implying z ≈ 3.9 as the true critical value. We thus
conclude that the larger than expected value of z found
here from the finite-size-scaling of p is due to the strong
corrections-to-scaling that effect the correlation length at
small L.

As another way to see the effect of corrections-to-
scaling on the correlation length, in Fig. 4 we plot our
results for p vs L at φ = 0.8433 ≈ φJ , as obtained
from quasistatic simulations [4, 6] representing the γ̇ → 0
limit. From Eq. (1) we expect as γ̇ → 0 the behavior,
p ∼ L−y/ν. If we fit the data at small L in Fig. 4 to a
power law, we then find the exponent, y/ν ≈ 1.79. Using
y = 1.08 this then gives ν ≈ 0.60, in rough agreement
with the value of ν obtained from the measured z of our
finite-size-scaling of p with γ̇. If, however, we fit the data
at only the largest L to a power law, we then find the
exponent y/ν ≈ 1.11. Again using y = 1.08, we then get
ν ≈ 0.97, in better agreement with the expected ν ≈ 1.
Fig. 4 thus shows in a very direct way that corrections-
to-scaling are significant for small system lengths L.

To conclude this section, although our finite-size-
scaling of the pressure data in Fig. 1(a) of the main article
is effected by corrections-to-scaling, and so gives a larger
value for the dynamic exponent z than we believe is ac-
tually the case at criticality, nevertheless the correlation
length ξ extracted from this data and shown in Fig. 1(b)
demonstrates that RD0 and CD0 are behaving qualita-
tively the same, and that both have a macroscopic length
scale ξ that is growing (and we would argue diverging)
as the jamming transition is approached.
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FIG. 4. Pressure p vs system length L at φJ ≈ 0.8433 for
quasistatic shearing. Dashed line is a power law fit to the
data at the smallest L, giving an exponent y/ν ≈ 1.79; solid
line is a power law fit to the data at the largest L, giving an
exponent y/ν ≈ 1.11.
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FIG. 5. Pressure p vs. shear strain rate γ̇ at packing fractions
φ = 0.80, 0.8433, 0.85 for: (a) model CD with m = 1 and
m = 10 for N = 262144 particles, and (b) model CD with
m = 1 and model CD0 with m = 0 for N = 1024 particles.

EFFECT OF FINITE MASS ON MODEL CD

We wish to verify that the mass parameter m = 1,
which we use in model CD, is indeed sufficiently small
so as to put our results in the overdamped m → 0 limit
corresponding to model CD0, for the range of parameters
studied here. In Fig. 5(a) we show results for the elastic
part of the pressure p vs γ̇ for model CD, with N =
262144 particles, at three different packing fractions: φ =
0.80, φ = 0.8433 ≈ φJ , and φ = 0.85. We compare
results for two different mass parameters, m = 1 and
m = 10. We see that the results agree perfectly for small
γ̇; significant differences are only found for γ̇ ≥ 10−3

which is higher than the largest shear rate used in our
scaling analysis. In Fig. 5(b) we similarly compare results
for model CD with m = 1 with explicit results for model
CD0, as obtained from simulations using the more costly
matrix inversion dynamics for m = 0. In this case we are
restricted to N = 1024 particles because our algorithm
for CD0 scales as N2. We see that in all cases there is
no observed difference between the two models. Thus we
conclude that our results from CD with m = 1 are indeed
in the overdamped m → 0 limit.
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