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2Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

(Received 12 September 2011; revised manuscript received 9 February 2012; published 6 September 2012)

We consider the rheology of soft-core frictionless disks in two dimensions in the neighborhood of the

athermal jamming transition. From numerical simulations of bidisperse, overdamped particles, we argue

that the divergence of the viscosity below jamming is characteristic of the hard-core limit, independent of

the particular soft-core interaction. We develop a mapping from soft-core to hard-core particles that

recovers all the critical behavior found in earlier scaling analyses. Using this mapping we derive a relation

that gives the exponent of the nonlinear Herschel-Bulkley rheology above jamming in terms of the

exponent of the diverging viscosity below jamming.
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A variety of disordered soft solids, such as foams,
colloids, and emulsions, are empirically observed to obey
a nonlinear rheology under steady state shearing known as
the Herschel-Bulkley (HB) law [1] � ¼ �0 þ c _�b. Here _�
is the shear strain rate, � is the average shear stress, �0 is
the yield stress at _� ! 0, and b is an exponent usually
(but not always) found experimentally to be in the range
0.33–0.5 [2]. Detailed microscopic models of the viscous
interaction in foams and emulsions have been studied to
try and understand the HB form [3]. However in the limit
of very slow strain rates _� ! 0, it seems likely that the
rheology will be determined by collective effects and may
be characterized as a critical phenomenon [4–6]. In this
limit, the HB rheology has been treated in terms of a
phenomenological model of slow glassy relaxation [4]
and more recently in terms of the nucleation of localized
plastic events [5].

Here we investigate this problem using numerical simula-
tions of a model of athermally sheared, frictionless,
soft-core disks. Such systems display a sharp jamming tran-
sition as the packing fraction � increases. For �<�J, the
system is liquid-like: at sufficiently small _� the rheology
is linear [7] with a finite shear viscosity � � �= _� that
diverges as �� j���Jj�� as � ! �J. For �>�J

rheology is nonlinear with a finite yield stress �0. By nu-
merically establishing a mapping from sheared soft-core
particles to sheared hard-core particles, we propose a relation
between the exponent b of the nonlinear HB rheology above
�J and the exponent� of the diverging viscosity of the linear
rheology below �J.

Our model [8] is one of N bidisperse soft-core disks in
two dimensions (2D), with equal numbers of particles with
radii ratio 1.4. The soft-core interaction between two over-
lapping particles i and j is VðrijÞ ¼ ð�=�Þ��

ij, where �ij ¼
ð1� rij=dijÞ is the relative particle overlap. Here rij is the
particles center to center distance, dij is the sum of their

radii, and � ¼ 2 or 5=2 for harmonic or Hertzian interac-
tion, respectively. Lengths are measured in units of the

small particle diameter ds, and energy in units of �. We use
Durian’s ‘‘mean-field’’ dynamics [9] of overdamped parti-
cles with a viscous dissipation with respect to the imposed
average linear shear velocity flow,

dri
dt

¼ �C
X
j

dVðrijÞ
dri

þ yi _� x̂ : (1)

Time is measured in units of d2s=C�. Lees-Edwards bound-
ary conditions [10] induce a uniform shear strain rate _�.
We use N ¼ 65536 particles so that finite size effects are
negligible. Simulating at fixed _� and �, we compute the
steady state time average of the elastic part of the pressure
tensor [8] to define the scalar pressure p and shear stress�.
We consider the pressure analog of the shear viscosity
�p � p= _�, rather than �, and restrict our analysis to a

very narrow range about �J, specifically 0:835 � � �
0:846 and _� � 10�6 for harmonic, and _� � 10�7 for
Hertzian, so as to allow us to ignore effects due to correc-
tions to scaling [11,12].
First we demonstrate the existence of the hard-core limit

below �J. In Fig. 1 we compare �p for both harmonic

and Hertzian interactions for small _� in the linear
rheology region. We see excellent agreement, showing
that the _� ! 0 limit of �p is independent of the particular

soft-core interaction. For the strict hard-core limit, one
expects that particles at different strain rates _� follow the
same path through phase space, only with different veloc-
ities, vi / _�. For overdamped particles this implies that
the contact forces also obey fij / _�, and hence p / _�.

One may think of p= _� in athermal shear driven flow as
analogous to the virial p=T of equilibrium hard-core
particles. In Fig. 1(b) we replot �p vs�J ��, using�J ¼
0:8433 as previously determined [11,13]. We see a clear
algebraic divergence of �p over four decades as � ! �J,

demonstrating that the exponent � is characteristic of the
hard-core limit, independent of the particular soft-core
interaction.

PRL 109, 108001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 SEPTEMBER 2012

0031-9007=12=109(10)=108001(5) 108001-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.108001


We next consider behavior outside the linear rheology
(hard-core) region, showing that one can map soft-core
particles at a given � and _� onto an equivalent
hard-core system at a lower �effð�; _�Þ, i.e., �pð�; _�Þ ¼
�pð�eff ; _� ! 0Þ � �hd

p ð�effÞ, using a simple form for�eff .

If this mapping holds, then even outside the linear rheology
region �p will have the scaling form,

�pð�; _�Þ ¼ �hd
p ð�effÞ ¼ Að�J ��effÞ�� (2)

with �hd
p ð�Þ given by the curve in Fig. 1. Such a mapping

was suggested by early work [14,15] in equilibrium. More
recently Berthier and Witten [16] combined such a �eff

approach with critical scaling to study the equilibrium
glass transition of soft spheres. A related analysis was
done by Xu et al. [17] while more recent works have
sought to extend this mapping over wider ranges of pres-
sure [18] and to systems with applied uniform shear strain
rate _� [19], though still at finite T.

Here we apply these ideas to an athermal shear-driven
system. We follow Berthier and Witten [16] and assume
that �eff is set by the extent of particle overlaps, as mea-
sured by the average interaction energy per particle E. We
thus make the ansatz,

�effð�; _�Þ ¼ �� hðEð�; _�ÞÞ (3)

with hðEÞ an appropriate function to be determined. Since
E ¼ 0 when there are no overlaps, hð0Þ ¼ 0.

We can now determine hðEÞ asymptotically close to �J

by applying two simple conditions on �eff:

�effð�; _� ! 0Þ ¼ �; for �<�J: (4)

Since E ! 0 as _� ! 0 below �J, overlaps vanish and
�eff ¼ �. The second condition is,

�effð�; _� ! 0Þ ¼ �J; for �>�J: (5)

Since p ! p0 > 0 as _� ! 0 for all �>�J, then �p ! 1
everywhere along the dynamic yield stress curve. In a hard-
core system, �p!1 only at �¼�J (�>�J being ex-

cluded by the nonoverlapping condition). Thus, as _�!0,

all�>�J in a soft-core system must map onto�eff ¼ �J

of the equivalent hard-core system.
If we similarly define E0ð�Þ � Eð�; _� ! 0Þ, then

Eqs. (3) and (5) imply hðE0ð�ÞÞ ¼ ���J for �>�J.
Close to �J, E0 scales to zero algebraically, E0�
ð���JÞyE . We thus conclude that hðEÞ � E1=yE , and so,

�effð�; _�Þ ¼ �� c½Eð�; _�Þ�1=yE : (6)

We test this mapping by measuring �p and E at various

� and _�, and fitting our data to Eqs. (2) and (6), taking A,
�J, �, c, and yE as free fitting parameters. In Fig. 2(a) we
show our raw data �p vs � for the harmonic interaction,

including points both above and below �J; �p decreases

with increasing _�, showing that our data include points
outside the linear rheology region. In Fig. 2(b) we show
the results of our fit to the �eff model, plotting �p vs

�J ��eff . We find an excellent data collapse, yielding
�J ¼ 0:84328� 0:00007, � ¼ 2:58� 0:10, and yE ¼
2:18� 0:02 [12]. We can compare this to our earlier results
[11] from a more general critical scaling analysis that was
independent of any �eff assumption. Defining the pressure
exponent yp by p0ð�Þ�ð���JÞyp , our earlier results

gave �J¼0:84347�0:00020, �¼	z�yp¼2:77�0:20

[20]; taking yE ¼ 2yp for harmonic interaction, we get

yE ¼ 2:16� 0:06. The excellent agreement between the
two approaches establishes the validity of our soft- to hard-
core mapping �eff , for the range of data we simulate.
Figure 3 shows a similar analysis for the Hertzian inter-

action. Outside the linear rheology region, the Hertzian �p

is smaller than for the harmonic case due to the softer
repulsion of the Hertzian cores. Consequently, our
Hertzian data generally lie further from the asymptotic
_� ! 0 hard-core limit and thus is poorer at determining
the critical behavior. However, since the parameters A, �J,
and � defining �hd

p in Eq. (2) are characteristic of the hard-

core limit, only the parameters c and yE defining �eff in
Eq. (6) should vary as the soft-core interaction is changed.
We therefore fix A, �J, and � to the values found from the
harmonic data and allow only c and yE to vary. The fit,
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FIG. 1 (color online). (a) �p � p= _� vs � for data below �J in
the linear rheology region. Open symbols are for the harmonic
interaction, solid symbols are for Hertzian. (b) Same data as in
(a) but plotted vs �J �� with �J ¼ 0:8433.
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FIG. 2 (color online). (a) �p � p= _� vs � for data above and
below �J for harmonic soft-core particles. (b) Same data as in
(a) but plotted vs �J ��eff . Dashed line in (a) and solid line in
(b) is the fit to the model of Eqs. (2) and (6). Symbols in (b)
correspond to the legend given in (a).
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shown in Fig. 3(b), is excellent and gives yE ¼
2:70� 0:04. We find yHertzianE =yharmonic

E ¼ 1:24� 0:05, in
good agreement with the ratio �Hertzian=�harmonic ¼ 1:25.
Since E is related to the average particle overlap � by
E� ��, this observation suggests �� ð���JÞ1:08, com-
mon to all soft-core interactions.

We now discuss the implications of our�eff mapping for
the HB rheology above�J. For observables X such as p,�,
or E, the HB form for small _� is

Xð�; _�Þ ¼ X0ð�Þ þ CX _�bX ; (7)

where bX is the HB exponent, and X0ð�Þ � Xð�; _� ! 0Þ.
First we review some conclusions that follow from a
general critical scaling ansatz [7,11], independent of our
�eff mapping. X is expected to have the scaling form

Xð�; _�Þ ¼ j��jyXX�
�

_�

j��jz	
�
; �� � ���J; (8)

where z	 ¼ �þ yp [20] andX� are the scaling functions

for �� _ 0. As � ! �J, and the argument of the scaling
function diverges, the dependence of X on �� should drop
out, thus requiring

X �ðx ! 1Þ � xyX=z	; (9)

so that exactly at �J we have the nonlinear rheology

Xð�J; _�Þ � _�qX ; with qX � yX
z	

¼ yX
yp þ �

: (10)

Unlike �, we see that the rheology exponent qX at �J does
depend on the particular soft-core interaction, via the
exponents yp and yX.

For �>�J, as _� ! 0, Eq. (7) requires the scaling
function Xþ to have the form

X þðx ! 0Þ ¼ cX þ c0XxbX ; (11)

with cX, c
0
X constants so that we recover Eq. (7) with

X0 ¼ cX��
yX ; and CX ¼ c0X��yX�bXz	: (12)

Thus the coefficient CX of the HB law of Eq. (7) must have
a particular scaling dependence on � as � ! �J.
We now return to our �eff model and consider the

pressure. From the definition of �p and Eq. (2) we can

write,

pð�; _�Þ ¼ _�A

ð�J ��effÞ�
¼ _�A

ð�J ��þ hðEÞÞ� : (13)

Substituting in Eq. (7) for E, and expanding hðEÞ to first
order for small _�, we get,

pð�; _�Þ ¼ _�A

½h0ðE0ÞCE _�bE�� ; (14)

where we used hðE0Þ ¼ cE1=yE
0 ¼ ð���JÞ to cancel out

the leading term in the expansion of hðEÞ. As _� ! 0 above
�J, p ! p0 is finite. We thus conclude from Eq. (14) that
we must have bE ¼ 1=�.
To determine the HB exponent for pressure, we just

extend the expansion in Eq. (14) to next order

p ¼ _�A

½h0ðE0ÞCE _�bE þ 1
2 h

00ðE0ÞC2
E _�2bE�� (15)

� p0

�
1� �h00ðE0ÞCE

2h0ðE0Þ _�bE

�
: (16)

Comparing to Eq. (7) for pwe conclude that bp¼bE¼1=�.

Similar results hold for the yield stress �. We thus conclude
that the HB exponents are all equal to b ¼ 1=� � 0:38�
0:02, and by our earlier arguments, they are all independent
of the particular soft-core interaction. We note that a similar
value, b � 0:36, was recently reported in experiments on
sheared foams [21].
We next numerically check our prediction for b. In

Fig. 4(a) we show the scaling collapse of energy E accord-
ing to Eq. (8) for the harmonic case. Using the parameters
found from our �eff fit, we see an excellent data

collapse. In Fig. 4(b) we plot ~Eþ � E=j��jyE � cE vs x �
_�=j��jz	 for �>�J, where cE of Eq. (11) is obtained
from c of Eq. (6) via cE ¼ 1=cyE . From Eq. (11) we expect
~Eþ � xb at small x while from Eq. (9) we expect ~Eþ � xqE

at large x. We consider E rather than p since there is a
greater difference between the exponents b and qE than
between b and qp. Fitting the data of Fig. 4(b) separately

at small and large x we find power-law behaviors with
b � 0:37 and qE � 0:55, respectively, in reasonable agree-
ment with the values expected from our �eff analysis,
b ¼ 1=� ¼ 0:38 and qE ¼ yE=ð�þ ypÞ ¼ 0:59. The

horizontal dashed line in Fig. 4(b) locates the value cE
on the vertical axis. Data below this line satisfy the condi-
tion ðE� E0Þ=E0 < 1. We see that this condition locates
the crossover from small to large x behavior, which occurs
near x � 103, or when _� � 103��z	.
Although we go to smaller values of _� than are typically

used in other works, the closest our data for �>�J
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FIG. 3 (color online). (a) �p � p= _� vs � for data above and
below �J for Hertzian soft-core particles. (b) Same data as in (a)
but plotted vs �J ��eff . Dashed line in (a) and solid line in (b)
is the fit to the model of Eqs. (2) and (6), using the same values
of A, �J, and � as found for the harmonic interaction model.
Symbols in (b) correspond to the legend given in (a).
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approaches the yield stress line is ðp� p0Þ=p0 * 0:18.
One can always question whether this is close enough to
give the true asymptotic critical behavior, or whether rheo-
logical behavior might change at even smaller _�. We leave
further investigation of this point to future work. Here we
note that experimental fits to the HB form usually involve
data extending well above this limit down to values that
typically do not go below� 0:1 [22]. Thus, even if our�eff

model ultimately breaks down closer to the yield stress
line, our results remain of considerable relevance for
understanding the experimentally determined value of the
HB exponent in numerous physical systems.

Our analysis has been for a model with dissipation to an
external reservoir, yielding a Newtonian (linear) rheology
below �J. In athermal granular systems, with collisional
dissipation and inertial effects, one expects Bagnold scal-
ing [23] �, p� _�2. In this case the Bagnold coefficient

scales as Bp � p= _�2 � ð�J ��Þ��0
as jamming is ap-

proached [24]. If a similar�eff model holds, one can repeat
all the steps of our above argument to arrive at the HB
exponent for this case b ¼ 2=�0 while exactly at �J

we have qX ¼ 2yX=ðyp þ �0Þ. From Ref. [24] we expect

�0 � 4, giving b � 0:5. We note that the exponent b � 0:5
was observed in recent molecular dynamic simulations of
a 2D athermal Lenard-Jones glass [5].

To conclude, by mapping soft-core particles at general
(�, _�) to hard-core particles at (�eff , _� ! 0), we map the
nonlinear rheology as _� ! 0 above jamming to the linear
rheology as _� ! 0 below jamming, resulting in a relation
between the HB exponent b and the viscosity exponent �.
When comparing our results to experiments, however,
several points must be kept in mind. (i) The HB exponent
b found here characterizes the rheology only for suffi-
ciently small _�. Near �J, as _� increases, one crosses into
a region characterized by the exponent q of Eq. (10) (see
Fig. 4). For systems with significant collisional dissipation

and inertial effects, a crossover from Newtonian to
Bagnold rheology is also possible [25–27]. Fitting the
HB form to data that spans such crossover regions will
therefore result in an effective exponent b different from
that reported here. (ii) The numerical value of b we report
here results from the simple Durian ‘‘mean-field’’model of
dissipation, Eq. (1). Different models for viscous dissipa-
tion may yield different values for the exponent �, and
hence for b [27,28].
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