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Effect of collisional elasticity on the Bagnold rheology of sheared frictionless two-dimensional disks
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We carry out constant volume simulations of steady-state, shear-driven flow in a simple model of athermal,
bidisperse, soft-core, frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian
rheology. Focusing on the small strain rate limit, we map out the rheological behavior as a function of particle
packing fraction φ and a parameter Q that measures the elasticity of binary particle collisions. We find a Q∗(φ)
that marks the clear crossover from a region characteristic of strongly inelastic collisions, Q < Q∗, to a region
characteristic of weakly inelastic collisions, Q > Q∗, and give evidence that Q∗(φ) diverges as φ → φJ , the
shear-driven jamming transition. We thus conclude that the jamming transition at any value of Q behaves the
same as the strongly inelastic case, provided one is sufficiently close to φJ . We further characterize the differing
nature of collisions in the strongly inelastic vs weakly inelastic regions, and recast our results into the constitutive
equation form commonly used in discussions of hard granular matter.
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I. INTRODUCTION

In a system of athermal (T = 0) granular particles with
soft- or hard-core contact interactions, as the particle packing
fraction φ increases, the system will undergo a jamming
transition from a liquidlike flowing state to a rigid but
disordered solid state, at a critical packing fraction φJ [1,2].
For particles without intergranular friction, this jamming
transition is in general continuous and the transport coefficients
characterizing the liquid state response to shear will, in the
low strain rate limit γ̇ → 0, diverge continuously as φJ is
approached from below [3–5].

For the case where the particle contact interaction is the
spring-dashpot model [6], where energy dissipation is due
only to particle collisions and is proportional to the difference
in the components of the colliding particles’ velocities normal
to the surface at the point of contact, the system is known
[7–14] to display Bagnoldian rheology [15] with pressure
p, and shear stress σ , scaling with shear strain rate γ̇ as
p,σ ∝ γ̇ 2, at sufficiently slow strain rates. In a recent work [5]
we considered the shear-driven jamming transition for such
a model of athermal, bidisperse, frictionless, soft-core disks
in two dimensions. We applied a critical scaling analysis to
determine the divergence of the Bagnold transport coefficients,
p/γ̇ 2 and σ/γ̇ 2, as one asymptotically approaches φJ from
below. Our analysis was for the specific case of a system with
strongly inelastic collisions.

In this work we systematically explore the effects on the
system rheology when one varies the degree of collision
elasticity away from the strongly inelastic limit. This question
was previously considered by Otsuki, Hayakawa, and Luding
(OHL) [16] who argued, from looking at simulations for
several specific cases, that the critical scaling associated with
the limit of strongly inelastic collisions always exists in a
window of φ sufficiently close to the jamming φJ , but that
the width of this window decreases as the collisions become
increasingly elastic, and ultimately vanishes in the limit of
purely elastic collisions. They used this result to reconcile the
behavior of transport coefficients observed in simulations of

particles with strongly inelastic collisions, with earlier work on
elastically (and nearly elastically) colliding particles [17–20].
However, they did not explicitly determine the location of this
crossover from strongly inelastic to nearly elastic behavior, but
only presented a schematic picture (their Fig. 18).

In the present work we reexamine this question by exploring
rheological behavior over a wide range of packing fraction
φ, and a parameter Q that controls the degree of elasticity
of particle collisions. We focus our attention on the hard-core
limit of our soft-core particle model, which is attained when the
applied shear strain rate γ̇ is sufficiently small and so particle
overlaps become negligible. We find that as Q increases at
fixed φ, there is a sharp, but nonsingular, crossover: at small
Q there is a region of behavior characteristic of strongly
inelastic collisions, in which transport coefficients are roughly
independent of Q; at large Q there is a region of behavior
characteristic of weakly inelastic collisions, where transport
coefficients increase with increasing Q (see Fig. 1). We
explicitly locate this crossover Q∗(φ) and provide evidence
that it diverges as φ → φJ . Thus, a system at any fixed Q

is always in the strongly inelastic region Q < Q∗ if one
is sufficiently close to φJ . This result thus supports the
conclusions of OHL [16].

The remainder of our paper is organized as follows. In
Sec. II we present our numerical model and dimensionless
variables, describe the calculation of the different pieces
of the pressure tensor and corresponding Bagnold transport
coefficients, and give details of our numerical simulation
method. In Sec. III we present our numerical results for the
Bagnold coefficients, determine the crossover Q∗(φ), discuss
the implications for the jamming transition as a function of
Q, and discuss the effect of varying Q on the macroscopic
friction μ = σ/p. We also discuss the different behavior of the
strongly inelastic vs the weakly inelastic region with regard to
the impact angle and time scales of collisions, as well as the
average particle contact number 〈Z〉. Finally, we recast our
results into the form of the constitutive equations commonly
used to discuss shear flow in systems of hard-core granular
particles [21–25]. In Sec. IV we summarize our conclusions.
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II. MODEL AND SIMULATION METHOD

A. Model

We use a well-studied model [1] of frictionless, bidisperse,
soft-core circular disks in two dimensions, with equal numbers
of big and small particles with diameter ratio db/ds = 1.4.
Particles interact only when they come into contact, in which
case they repel with an elastic potential,

Vij (rij ) =
{

1
α
ke(1 − rij /dij )α, rij < dij

0, rij � dij .
(1)

Here rij ≡ |rij |, where rij ≡ ri − rj is the center to center
displacement from particle j at position rj to particle i at ri ,
and dij ≡ (di + dj )/2 is the average of their diameters. In this
work we will use the value α = 2, corresponding to a harmonic
repulsion. The resulting elastic force on particle i from particle
j is,

fel
ij = −dVij (rij )

dri

= ke

dij

(
1 − rij

dij

)α−1

r̂ij , (2)

where r̂ij ≡ rij /rij is the inward pointing normal direction at
the surface of particle i.

Particles also experience a dissipative force when they come
into contact. We take this force to be proportional to the
projection of the velocity difference of the contacting particles
onto the direction normal to the surface at the point of contact.
The dissipative force on particle i from particle j is,

fdis
ij = −kd [(vi − vj ) · r̂ij ]r̂ij , (3)

where vi ≡ dri/dt is the center of mass velocity of particle
i. We have earlier [14] denoted this model of dissipation as
CDn for normal contact dissipation. This dissipative force is
well known to result in Bagnoldian rheology [7–14,21]. The
combination of elastic and dissipative forces of Eqs. (2) and
(3) is often referred to as the spring-dashpot model [6]. We
note that the constants ke and kd , which define the strengths of
our forces have different physical units.

Particle motion is governed by the deterministic Newton’s
equation,

mi

d2ri

dt2
=

∑
j

[
fel
ij + fdis

ij

]
, (4)

where mi is the mass of particle i and the sum is over all
particles j in contact with particle i. In this work we take
particles to have a mass proportional to their area, i.e., small
particles have mass ms = ρ0π (ds/2)2 and big particles have
mass mb = ρ0π (db/2)2, with ρ0 the mass per area. We define
m0 = 1

2ρ0d
2
s as a unit of mass [26].

The above microscopic dynamics possess two important
time scales [14], the elastic and dissipative relaxation times,

τe ≡
√

m0d2
s /ke, τd ≡ m0/kd . (5)

The parameter

Q ≡ τd/τe =
√

m0ke/(kdds)2 (6)

measures the degree of elasticity of the collisions. For the
harmonic interaction that we use, if we regarded the elastic
potential of Eq. (1) as a spring, which did not break when

particles lose contact, then 2πτe would give the undamped
natural period of oscillation, 2τd would be the decay time, and
Q would be the quality factor.

Q may also be related to the coefficient of restitution e of a
collision. For the isolated head-on collision of two particles i

and j , we have,

e = exp

⎡
⎣−π

/√
4

(
mij

m0

)(
ds

dij

)2

Q2 − 1

⎤
⎦, (7)

where mij = mimj/(mi + mj ) is the reduced mass of the
two particles [6]. When Q < (dij /2ds)

√
m0/mij , so that the

argument of the square root would be negative, the collision
is completely inelastic with e = 0. For two small particles
this happens when Q < Qd = 0.564. Note, however, that in
our two-dimensional geometry, a collision that is not strictly
head-on will result in particles separating after the collision
even if e = 0, since tangential relative motion is not dissipated
by the force fdis

ij of Eq. (3).
Our system consists of a fixed total number particles N in

a square box of fixed length L. L is chosen to set the particle
packing fraction φ,

φ = πN

2L2

[(
ds

2

)2

+
(

db

2

)2
]
. (8)

To apply a uniform shear strain rate γ̇ in the x̂ direction,
we use periodic Lees-Edwards boundary conditions [27], so
that a particle at position r = (rx,ry) has images at positions
(rx + mL + nγL,ry + nL), with n, m integer and γ = γ̇ t the
total shear strain at time t .

B. Pressure tensor

To determine the global rheology of the system we measure
the pressure tensor of each configuration. We can break this
pressure tensor into three pieces [16,27]: the elastic part pel,
arising from the repulsive elastic forces of Eq. (2),

pel ≡ 1

L2

∑
i<j

fel
ij ⊗ rij , (9)

the dissipative part pdis, arising from the dissipative forces of
Eq. (3),

pdis ≡ 1

L2

∑
i<j

fdis
ij ⊗ rij , (10)

and the kinetic part pkin (sometimes called the streaming part),

pkin ≡ 1

L2

∑
i

miδvi ⊗ δvi , (11)

where δvi ≡ vi − γ̇ yi x̂ is the fluctuation away from the linear
average velocity profile that characterizes the uniform shear
strain flow. The total pressure tensor is then,

p = pel + pdis + pkin. (12)

The average pressure p and shear stress σ in the system are
then,

p = 1
2 [〈pxx〉 + 〈pyy〉], σ = −〈pxy〉, (13)
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where 〈. . . 〉 represents an ensemble average over configura-
tions in the sheared steady state. Also of potential interest is
the pressure anisotropy δp and the deviatoric stress σdev,

δp = 1
2 [〈pxx〉 − 〈pyy〉], σdev =

√
δp2 + σ 2. (14)

In the Appendix we present numerical results to show that
while δp can be non-negligible at low φ and low Q, the
difference between σdev and σ is always small for the range of
parameters we consider.

Finally, we can define the granular temperature Tg in the
usual way,

Tg ≡ 1

N

∑
i

mi〈|δvi |2〉. (15)

We note that the kinetic part of the pressure pkin is simply
related to Tg by pkin = nTg with n = N/L2 the density of
particles.

It is convenient to work in terms of dimensionless quanti-
ties. We take the diameter of the small particles ds , and the
mass m0, as our units of length and mass, respectively. We
take τe as the unit of time. With these choices, stress in two
dimensions is measured in units of m0/τ

2
e , and so we can define

a dimensionless pressure tensor P = (τ 2
e /m0)p.

Because we expect (and in the following section we
confirm) that our system obeys Bagnoldian rheology, with
p,σ ∼ γ̇ 2 for sufficiently small γ̇ , we define the dimensionless
Bagnold coefficients in terms of the components of P/(γ̇ τe)2,

Bp ≡ p

m0γ̇ 2
, Bσ ≡ σ

m0γ̇ 2
, (16)

and similarly for the separate pieces, Bel
p , Bdis

p , Bkin
p , etc. These

dimensionless Bagnold coefficients are functions of only the
dimensionless parameters φ, Q, and γ̇ τe. As we will soon see,
using τe as the unit of time will give Bagnold coefficients that
become independent of Q at small Q for small γ̇ τe [14].

Note, the hard-core limit of infinitely stiff particles is
usually considered as the limit ke → ∞, i.e., the interaction
potential of Eq. (1) is so stiff that any particle overlaps are
suppressed [28]. By Eq. (5) this implies τe → 0 for particles
with finite mass. However, when expressed in the above
dimensionless variables, we see that the hard-core limit is
really the limit γ̇ τe → 0. Thus, even for soft-core particles
with finite ke, and so finite τe, we can reach the hard-core limit
by taking a suitably small value of γ̇ [16]. For sufficiently
small γ̇ τe we expect the Bagnold coefficients Bp and Bσ to
approach well-defined values that depend on φ and Q, but are
independent of γ̇ τe. These are the limiting hard-core values.
How small γ̇ τe must be to reach this hard-core limit is not
a priori known, it must be explicitly verified by simulations.
Note also that this hard-core limit places no constraint on
the value of Q. One should thus be careful to distinguish
between the elasticity of particle interactions (i.e., stiffness
of the particle core) governed by ke or equivalently τe, and
the elasticity of particle collisions (i.e., degree of energy
conservation in a collision) governed by Q; the term elasticity
has quite different meanings in these two different usages. The
behavior of the hard-core Bagnold coefficients, as a function
of φ and Q, will be the main concern of this work.

C. Simulation method

In our numerical simulations, we choose the diameter of the
small particles to be ds = 1, and the mass m0 = 1, and take the
unit of time τe = 1 (which implies the elastic coupling ke = 1).
We integrate the equations of motion (4) using a modified
velocity-Verlet algorithm with a Heun-like prestep to account
for the velocity dependent acceleration. We use an integration
time step given by the following heuristic formula that varies
according to the value of Q, 
t/τe = min{0.5/Q,0.1,0.2Q}.
The dependence of 
t/τe on Q is motivated by the following
physical picture: at large Q, particles move quickly so small
time steps are needed to resolve all collisions; at very small Q

(large kd ), the dissipative force can become very large and too
large a time step would cause particles to unphysically reverse
direction rather than just slow down. We have tested that our
heuristic formula satisfactorily gives results independent of
further decreasing the time step [29].

We simulate for a range of strain rates from γ̇ τe = 10−3

down to 10−6. For γ̇ τe = 10−5 (which corresponds to most
of our presented results), we simulate out to a total strain
γ = γ̇ t of roughly 4 < γ < 100, with the longest runs lying
at intermediate values of 0.5 � Q � 10. For γ̇ τe = 10−6 we
simulate to a total strain of roughly 0.12 < γ < 10, again with
the longest runs at intermediate values of Q. In each case we
exclude the initial 50% of the run in order to reach steady state,
and then collect data for our averages from the remainder of
the run. For each parameter point (φ,Q,γ̇ τe) we average over
at least five independent runs. Simulations at our largest γ̇ are
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FIG. 1. The elastic part of the Bagnold coefficients for (a)
pressure p and (b) shear stress σ vs collision elasticity parameter Q

for different values of packing fraction φ, which goes from 0.835–0.60
as the curves go from top to bottom. Open symbols at all φ are
for a shear strain rate γ̇ τe = 10−5; corresponding solid symbols at
φ = 0.60 and 0.835 are for γ̇ τe = 10−6. The absence of a dependence
on γ̇ τe shows that results are in the hard-core limit.
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FIG. 2. The dissipative part of the Bagnold coefficients for (a)
pressure p and (b) shear stress σ vs collision elasticity parameter Q

for different values of packing fraction φ. Open symbols connected
by solid lines at all φ are for a shear strain rate γ̇ τe = 10−5;
corresponding solid symbols connected by dashed lines, at φ = 0.60
and 0.835, are for γ̇ τe = 10−6.

started from an initial random configuration at each (φ,Q);
simulations at smaller γ̇ start from a steady-state configuration
sampled from the simulation at the next larger γ̇ , at the same
value of (φ,Q).

III. RESULTS

In this section we describe our numerical results. We
consider systems with a range of packing fractions from
φ = 0.60–0.835, and a range of Q from 0.1–500. Our range
of Q corresponds to a coefficient of restitution for two
small particles ranging from e = 0–0.9965 (for Q < 0.564,
e = 0; for Q = 2, e = 0.3970; for Q = 10, e = 0.8373). In
a previous work [5] we carried out a detailed critical scaling
analysis of the jamming transition for the specific strongly
inelastic case of Q = 1, determining the value of the packing
fraction at jamming to be φJ = 0.843 35 ± 0.000 05. Here we
will present results to argue that the value of φJ , as well as all
other critical parameters at jamming, are independent of the
particular value of Q.

Since our objective in the present work is to provide an
understanding of the effect that varying Q has on the rheology,
rather than a quantitative analysis of critical behavior at
jamming, our investigations will avoid getting too close to φJ ;
the closest we get to jamming will be (φJ − 0.835)/φJ = 0.01.
This allows us to work with the relatively small system size
of N = 1024 particles without incurring finite-size effects,
and relatively large strain rates γ̇ τe � 10−6 that still put us
in the hard-core limit; this can be compared to the values
N = 262 144 and γ̇ τe � 2 × 10−8, which we used in Ref. [5].
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FIG. 3. The kinetic part of the Bagnold coefficients for (a)
pressure p and (b) shear stress σ vs collision elasticity parameter
Q for different values of packing fraction φ. In (a), φ decreases as
the curves go from top to bottom; in (b) φ increases as the curves
go from top to bottom. Open symbols at all φ are for a shear strain
rate γ̇ τe = 10−5; corresponding solid symbols at φ = 0.60 and 0.835
are for γ̇ τe = 10−6. The absence of a dependence on γ̇ τe shows that
results are in the hard-core limit. Note the linear vertical scale in (b),
which is necessary since Bkin

σ changes sign.

A. Bagnold coefficients

In Figs. 1, 2, and 3 we present our results for the elastic,
dissipative, and kinetic parts of the Bagnold coefficients for
pressure p and shear stress σ , which we plot vs the elasticity
parameter Q for different fixed values of the packing fraction
φ. We show results for a shear strain rate γ̇ τe = 10−5, except
for our smallest φ = 0.60 and largest φ = 0.835, where
we show results for both γ̇ τe = 10−5 (open symbols) and
γ̇ τe = 10−6 (solid symbols). The observed absence of any
dependence of the results on γ̇ τe (except for Bdis

p and Bdis
σ at

the smallest Q and largest φ, see more below) indicates that our
results are at sufficiently small γ̇ τe to represent the hard-core
limit. If we wished to explore closer to the jamming point
φJ = 0.843 35, it would be necessary to use smaller γ̇ τe.

We consider first the dissipative parts Bdis
p and Bdis

σ , shown
in Fig. 2. At small Q, we have found that the dissipative part
fluctuates rapidly as a function of time, and so it was the
most difficult of the three parts to compute accurately; our
results here tend to be from longer runs than used elsewhere.
We see that both Bdis

p and Bdis
σ are essentially zero, except

for the smallest Q at the very largest φ. For the largest φ =
0.835 we see that Bdis

σ decreases substantially as the strain
rate decreases from γ̇ τe = 10−5 (open circles) to 10−6 (solid
circles). Considering other values of γ̇ τe (not shown here)
our results suggest that Bdis

σ ∼ γ̇ τe. In contrast, Bdis
p at φ =

0.835 seems possibly to increase slightly as γ̇ τe decreases from
10−5 to 10−6; however, the estimated errors here are large and
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FIG. 4. Relative contribution of the kinetic part to the total
Bagnold coefficient: (a) Bkin

p /Bp and (b) |Bkin
σ |/Bσ vs Q for different

fixed packing fraction φ, which goes from 0.60–0.835 as the curves
go from top to bottom. Open symbols at all φ are for a shear strain rate
γ̇ τe = 10−5; solid symbols at φ = 0.60 and 0.835 are for γ̇ τe = 10−6.
Note, Bkin

p /Bp = nTg/p, with Tg the granular temperature.

we cannot with confidence deduce a clear trend. In any case,
comparing Fig. 2 with Fig. 1, we see that, for all values of φ

and Q considered here, Bdis
p and Bdis

σ are completely negligible
compared to Bel

p and Bel
σ . We therefore henceforth ignore these

terms and take Bp,σ = Bel
p,σ + Bkin

p,σ .
Considering next the kinetic parts Bkin

p and Bkin
σ in Fig. 3

we see that as φ increases, Bkin
p steadily increases, while

Bkin
σ decreases, becoming negative as φ gets close to the

jamming φJ = 0.843 35. In Fig. 4 we plot the ratio Bkin
p /Bp

and |Bkin
σ |/Bσ vs Q for different fixed φ. We see that the

relative contribution of the kinetic part to the total Bagnold
coefficient is largest at our smallest φ, where it is roughly 10%.
But as φ increases, this relative contribution for p drops rapidly
to 0.1–0.5% (depending on Q) at our largest φ = 0.835; for
σ it is in the range 0.05–0.1%. Thus the contribution of the
kinetic part becomes negligibly small as the jamming point is
approached, justifying the neglect of this term in our earlier
scaling analysis [5] of the divergence of Bp and Bσ at jamming
for small Q = 1.

We also note that, because of the relation between pkin and
the granular temperature Tg (pkin = nTg), we have Bkin

p /Bp =
nTg/p. If our athermally sheared system was behaving the
same as an equilibrium system at thermal temperature T = Tg ,
we would expect that, in the hard-core limit, nTg/p would be
independent of the details of the dynamics and so a function
solely of the packing fraction φ, independent of the parameter
Q. The dependence of Bkin

p /Bp = nTg/p on Q observed in
Fig. 4(a), most notably at the larger values of φ, thus indicates

100

101

102

103

0.55 0.60 0.65 0.70 0.75 0.80 0.85

Bp

Bσ

BpQ

φ

φJ

(a)el

el

kin

strongly inelastic

weakly inelastic

γτe = 10−5.

Q*(φ)

0.5

1.0

1.5

2.0

0.55 0.60 0.65 0.70 0.75 0.80 0.85

Bp

Bσ

Bpq
φ

φJ

(b)el

el

kin

γτe = 10−5.

FIG. 5. (a) Phase diagram in the Q-φ plane, showing the
crossover Q∗(φ) that separates the region of strongly inelastic
behavior from weakly inelastic behavior. We show values for Q∗ as
determined independently from the Bagnold coefficients Bel

p , Bel
σ , and

Bkin
p of Figs. 1 and 3(a); these are all found to agree. Solid line is a fit

of Q∗, as obtained from Bel
p , to the form Q0 + c(φJ − φ)−x with fixed

φJ = 0.843 35, and yields the value x ≈ 1.65. (b) Exponents q that
determine the large Q algebraic increase of the Bagnold coefficients
Bel

p , Bel
σ , and Bkin

p . In both panels the vertical dashed line locates the
jamming transition at φJ = 0.843 35. Results are from simulations
with shear strain rate γ̇ τe = 10−5.

the difference between shear induced fluctuations and thermal
fluctuations.

Finally, we consider the elastic parts Bel
p and Bel

σ in Fig. 1.
We see that at each φ there is a clear crossover value Q∗(φ),
such that for Q < Q∗ the Bagnold coefficients are independent
of Q, while for Q > Q∗ the Bagnold coefficients increase with
Q algebraically. The value of Q∗(φ) increases as φ increases.
The same behavior is also observed in the kinetic parts Bkin

p

and Bkin
σ . To determine the crossover values Q∗ we fit our

data to the phenomenological form B = C[1 + (Q/Q∗)s]q/s ,
which interpolates between the small and large Q behaviors.
The exponent q gives the large Q algebraic behavior, while
the parameter s determines the sharpness of the crossover at
Q∗. The solid lines in Figs. 1 and 3 are the results of such fits.

In Fig. 5(a) we show the resulting phase diagram in the
Q-φ plane, plotting the crossover Q∗(φ) that separates the
region of strongly inelastic behavior (Q < Q∗) from weakly
inelastic behavior (Q > Q∗). We show Q∗ as determined from
the above described fits, independently fitting to the data for
Bel

p , Bel
σ , and Bkin

p shown previously in Figs. 1 and 3(a). We see
that the values of Q∗ obtained from these three quantities all
agree nicely. We do not show results for Bkin

σ since, as may be
seen in Fig. 3(b), the large scatter of the data at large Q, and
the change in sign of Bkin

σ upon increasing φ, gives a poor fit
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to our phenomenological form at the larger φ. In Fig. 5(b) we
show the fitted values of the exponent q that give the large Q

algebraic growth in the Bagnold coefficients. For the pressure
parts, Bel

p and Bkin
p , we see that q increases from roughly

1.1–1.5 as φ increases towards jamming; for the shear stress
Bel

σ , q is noticeable smaller, increasing from roughly 0.6–1.0. It
is unclear if one should ascribe any fundamental significance to
these particular values of q, of if they describe only empirical
fits over the limited range of Q we have investigated.

B. Shear-driven jamming transition

We return to our results in Fig. 5(a). We denote the region
Q < Q∗, where the Bagnold coefficients become independent
of Q, as the strongly inelastic region, while Q > Q∗ is
the weakly inelastic region. We discuss further some of the
physical differences between these two regions in the next
section.

An important feature of our result for Q∗(φ) is that Q∗
appears to be diverging as φ increases towards the jamming φJ .
This would imply that a system at any fixed value of Q always
crosses over from the weakly inelastic region into the strongly
inelastic region, as φ increases above φ∗(Q), defined as the
inverse of Q∗(φ). Since jamming thus always takes place in
the strongly inelastic region, and since in the strongly inelastic
region the values of Bp and Bσ are independent of the particular
value of Q, the asymptotic divergence of these quantities upon
jamming is the same for all Q. Hence the jamming packing
fraction φJ , and all jamming critical exponents, are the same
for all Q and so equal to the values found in our earlier scaling
analysis [5] carried out at the specific value of Q = 1.

Thus, the only effect that increasing Q has on the jamming
transition is to decrease the region where strongly inelastic
behavior (and its consequent critical scaling) holds. As
Q diverges, and so collisions are perfectly elastic (energy
conserving), this region shrinks to zero. So it is only for this
case of perfectly elastic collisions that the jamming critical
behavior may become different. The same conclusion was
previously reached by OHL in Ref. [16].

To support this conclusion, we fit our data for Q∗, as
obtained from Bel

p , to the form Q∗(φ) = Q0 + c(φJ − φ)−x .
The solid line in Fig. 5(a) is the result of such a fit keeping
φJ = 0.843 35 fixed at the value determined by Ref. [5],
and yields the exponent of divergence x ≈ 1.65 ± 0.02 and
Q0 = 1.89 ± 0.06. If we instead let φJ be a free parameter,
then the fit gives φJ = 0.8425 ± 0.0010, x = 1.59 ± 0.07, and
Q0 = 1.8 ± 0.1, consistent with the previous result within the
estimated errors. The fitted values do not change significantly
if we shrink the window of the fitted data closer to φJ .

To further illustrate the above point, in Fig. 6 we plot
the total Bagnold coefficients Bp and Bσ vs φ, at different
fixed values of Q. We see that the curves for different Q all
are approaching a common curve, representing the strongly
inelastic limit, as φ approaches φJ . As φ decreases from φJ ,
the curves peel off from this common curve at a φ∗(Q) that
decreases as Q decreases. For the several smallest values of
Q, the curves overlap for the entire range of φ shown.

As φ approaches close to the jamming φJ , we expect to see
a power-law divergence of the Bagnold coefficients, Bp,σ ∼
(φJ − φ)−β . In our previous work of Ref. [5] at Q = 1 we
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FIG. 6. Total Bagnold coefficients (a) Bp and (b) Bσ , for pressure
p and shear stress σ respectively, vs packing fraction φ, for different
fixed values of the collision elasticity parameter Q; Q increases from
0.1–500 as curves go from bottom to top. The vertical dashed line
locates the jamming transition at φJ = 0.843 35. Results are from
simulations with shear strain rate γ̇ τe = 10−5.

argued that to see the true asymptotic divergence of Bp and
Bσ at jamming one needs to get extremely close to φJ and
use very small strain rates γ̇ . Using a detailed critical scaling
analysis, including leading corrections to scaling, we found
β = 5.0 ± 0.4 (see Ref. [5] for a discussion of how this value
of β relates to those obtained in earlier numerical works).
We further showed that if one fits a simple power law to the
Bagnold coefficients over a wider range of φ and γ̇ , one finds
only an effective exponent βeff < β, whose value depends on
the window of data used in the fit (see Fig. 7 of Ref. [5]). In
the present work, we do not get anywhere close enough to the
jamming critical point to see the true exponent β. Nevertheless,
we can still ask how the effective exponent βeff will vary if one
increases Q.

In Fig. 7 we replot our data for Bp and Bσ vs φJ − φ, using
φJ = 0.843 35 from Ref. [5]. For small Q, where the data is
in the strongly inelastic region for most of the values of φ, we
find for our range of data βeff ≈ 3.3 for Bp and 3.0 for Bσ .
In contrast, for our largest Q = 500, where most of the data
remains in the weakly inelastic region, we find βeff ≈ 1.3 for
Bp and 1.4 for Bσ . Thus, βeff can decrease substantially as
Q increases and collisions become increasingly elastic. If we
further allowed φJ to be a free fitting parameter, rather than
fixing it to its known value as we have done here, it is possible
that yet other values of βeff may be obtained.

We can, in principle, include the effects of a varying Q

within a critical scaling theory. If we assume that for Q < Q0

the Bagnold coefficients are independent of Q for all φ, then
for δQ ≡ Q − Q0 > 0 we can regard δQ as a new scaling
variable. Since δQ > 0 does not change the criticality of the
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FIG. 7. Total Bagnold coefficients (a) Bp and (b) Bσ , for pressure
p and shear stress σ , respectively, vs φJ − φ, for different fixed values
of the collision elasticity parameter Q; Q increases from 0.1–500 as
curves go from bottom to top. We use φJ = 0.843 35 from Ref. [5].
The bold straight lines, with slopes as indicated in the figure, denote
the approximate power-law dependencies of our data closest to φJ , for
the smallest and largest values of Q (these are not the true power-law
divergences asymptotically close to φJ ; see text). Results are from
simulations with shear strain rate γ̇ τe = 10−5.

jamming transition, it is an irrelevant variable, and thus has
a negative scaling exponent. We can then write the scaling
equation [5] for Bp as,

Bp(φ,Q,γ̇ ) = bβ/νf (δφb1/ν,γ̇ bz,δQb−x/ν,wb−ω), (17)

where b is an arbitrary length rescaling factor, δφ = φJ −
φ, ν, and z are the correlation length and dynamic critical
exponents respectively, and w is the leading irrelevant variable
with exponent ω. If we then choose b = δφ−ν , and consider
the hard-core limit of γ̇ → 0, the above becomes

Bp(φ,Q) = δφ−βf (1,0,δQδφx,wδφων). (18)

If we were close enough to the jamming point so that the
leading irrelevant variable wδφων could be ignored, then
plotting Bpδφβ vs δQδφx would yield a collapse of the
curves for different δQ. However, our prior work in Ref. [5]
has shown that the leading irrelevant variable cannot be
ignored for the range of parameters considered here, so
such a collapse is not possible for our data. Nevertheless,
Eq. (18) still leads to the conclusion that the crossover from
the strongly inelastic limit to the weakly inelastic limit is
governed by the parameter δQδφx , and so takes place when
Q∗ = Q0 + cδφ−x , consistent with our numerical results
in Fig. 5(a).

Finally, we consider the macroscopic friction, μ ≡ σ/p.
Although the individual particles have frictionless contacts,
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FIG. 8. Macroscopic friction μ ≡ σ/p vs φ for different fixed
values of Q; Q increases from 0.1–500 as curves go from top to
bottom. The vertical dashed line locates the jamming transition at
φJ = 0.843 35. Results are from simulations with shear strain rate
γ̇ τe = 10−5.

the macroscopic friction remains finite. In Fig. 8 we plot μ vs
φ for different fixed values of Q. We see that as φ approaches
φJ = 0.843 35, μ approaches a common value μJ for all Q.
In our prior work [5] we estimated μJ ≈ 0.093. Although our
results for μ are rather noisy, the trend in behavior as φ and Q

are varied is clear. At the smallest Q, the curves for μ overlap
for all φ, giving the limiting behavior of the strongly inelastic
region, for which μ increases as φ decreases. For larger Q, μ

follows this common curve until φ decreases below φ∗(Q), at
which point μ(φ,Q) falls below the strongly inelastic limit.
For sufficiently large Q, μ even decreases as φ decreases, and
can fall below the value of μJ .

C. Strong vs weak inelastic regions

Having found the crossover Q∗(φ) between the strongly and
weakly inelastic regions, we can ask what different physical
signatures characterize the behavior in the different regions.
One clear difference that we find concerns the angle of collision
impact. To measure this, let us define,

rij ≡ ri − rj , vij ≡ vi − vj , (19)

as the position and velocity of particle i with respect to particle
j . We then define the angle θ as the angle by which one must
rotate vij to align it parallel with rij [30]. For two particles
just initiating a contact, we must have v̂ij · r̂ij = cos θ < 0,
so that the particles are driven into each other, as illustrated
in Fig. 9(a). In this case we must have 90◦ < θ < 270◦. For
two particles just breaking a contact, we must have v̂ij · r̂ij =
cos θ > 0, so that the particles are driven away from each
other, as illustrated in Fig. 9(b). In this case we must have
−90◦ < θ < 90◦.

Measuring the value of θ each time a contact is initiated and
each time a contact is broken, we construct a histogram P(θ ),
which combines both contact initiation and contact breaking
events. In Fig. 10 we plot P(θ ) vs θ at several different
values of Q, for the particular case of φ = 0.78 for which
Q∗ ≈ 7.35. For the weakly inelastic case of Q = 500 
 Q∗
in Fig. 10(a), we see thatP(θ ) ∼ | cos θ |, as would be expected
if the collision impact parameter, b = |rij × v̂ij |, is distributed
uniformly on the interval −dij < b < dij . Thus, deep in the
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FIG. 9. Schematic of the collision of two particles i and j .
(a) Initiation of contact, where 90◦ < θ < 270◦, and (b) break-
ing of contact, where −90◦ < θ < 90◦. Here rij ≡ ri − rj and
vij ≡ vi − vj .

weakly inelastic region collisions occur at all angles, with a
normal head-on collision at θ = 0 being the most likely. In
contrast, for the strongly inelastic case of Q = 0.1 � Q∗ in
Fig. 10(f), we see that P(θ ) has sharp peaks at θ = ±90◦,
and P(θ ) is a minimum at θ = 0. Thus, in the strongly
inelastic region collisions involve mostly tangential relative
motion between particles. Figures 10(b)–10(e) show P(θ )
at intermediate value of Q to illustrate how the distribution
transforms between these two limits. We observe similar
behavior at other values of φ. The reason for this behavior
is simple. As Q gets small, the dissipative force of Eq. (3)
damps out the relative normal motion of particles in contact,
but does not effect the relative tangential motion.

We can get further insight into the different nature of col-
lisions in the strong vs weak inelastic regions by considering
the average time duration of a collision, τdur, and the average
collision rate, νcoll; τdur is defined as the time from the initiation
of a particular particle contact to the breaking of that contact,
νcoll is defined as the average number of collisions per unit time
divided by the number of particles. In Fig. 11(a) we plot τdur/τe

vs Q, for the particular case of φ = 0.78 and several different
strain rates γ̇ τe. We see that τdur/τe is essentially constant
in the weakly inelastic region Q > Q∗; this constant value
τdur/τe ≈ 4 is just slightly bigger than the large Q value for
an isolated head-on collision between a small and big particle,
which is 3.84 [6]. But as Q decreases into the strongly inelastic
region, we see that τdur/τe rises over two orders of magnitude.
For the strain rates considered here, we see that τdur/τe varies
little with γ̇ τe.

In Fig. 11(b) we plot the dimensionless νcoll/γ̇ vs Q for
the same parameters as in Fig. 11(a), i.e., φ = 0.78 and γ̇ τe =
10−4, 10−5, and 10−6. We see that in the weakly inlastic region,
Q > Q∗, the curves for different γ̇ τe coincide, showing that
νcoll ∝ γ̇ . In the strongly inelastic region, Q < Q∗, however,
the curves separate, with the smaller strain rate curve lying
above the higher strain rate curve; this shows that in the
strongly inelastic region the collision rate νcoll grows more
slowly than linearly with increasing γ̇ .

In Ref. [16] OHL give a relation between the average
instantaneous particle contact number 〈Z〉 and the collision
duration τdur and rate νcoll. Z is the number of contacts a given
particle has with the other particles at any particular instant
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FIG. 10. Histograms P(θ ) vs collision angle θ , at initiation and
breaking of particle contacts (see Fig. 9 for definition of θ ), at φ =
0.78. Results are shown for different values of the collision elasticity
parameter Q. (a) Q = 500, (b) Q = 50, (c) Q = 20, (d) Q = 10, (e)
Q = 5, and (f) Q = 0.1. The crossover Q∗ ≈ 7.35 at this value of φ.
Dotted blue line in (a) is a fit to P(θ ) = C| cos(θ )|. Results are for
the shear strain rate γ̇ τe = 10−5.

in time. They argue that 〈Z〉 = 2τdurνcoll. Using our data in
Fig. 11 we find excellent agreement with this prediction [31],
as we show in Fig. 12. From this relation we can infer the
behavior of 〈Z〉 as a function of the strain rate γ̇ . As argued
by OHL [16], and reported by us recently [14], we find that
in all regions below φJ , 〈Z〉 → 0 as γ̇ → 0. However, as we
show now, the manner in which 〈Z〉 vanishes with decreasing
γ̇ differs in the two regions. In the weakly inelastic region,
Q > Q∗, since from Fig. 11 we see that both τdur/τe and
νcoll/γ̇ are independent of the strain rate γ̇ τe, we conclude
that 〈Z〉 ∝ γ̇ τe as γ̇ → 0. But in the strongly inelastic region,
Q < Q∗, we see that τdur/τe is roughly independent of γ̇ τe but
νcoll/γ̇ is decreasing more slowly than linearly in the strain
rate; hence we conclude that in the strongly inelastic region
〈Z〉 decreases more slowly than linearly with γ̇ τe as γ̇ → 0.

We show this explicitly in Fig. 13. In Fig. 13(a) we show
〈Z〉 vs γ̇ τe, for different values of Q, at the packing fraction
φ = 0.78 where Q∗ ≈ 7.35. We see that for large Q � Q∗,
〈Z〉 decreases linearly with γ̇ τe as γ̇ τe → 0. However for
Q < Q∗, 〈Z〉 decreases more slowly as γ̇ τe → 0. In Fig. 13(b)
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FIG. 11. (a) Average duration of collision τdur/τe, from time of
initiation of contact to time of breaking of contact, vs collision
elasticity parameter Q. (b) Ratio of average collision rate to strain
rate, νcoll/γ̇ , vs Q. In both panels results are shown for packing
fraction φ = 0.78 and shear strain rates γ̇ τe = 10−4, 10−5, and 10−6.
The crossover Q∗ ≈ 7.35, separating strongly from weakly inelastic
regions, is denoted by the vertical arrow.

we plot 〈Z〉/γ̇ τe vs Q for several different values of φ, at
the two strain rates γ̇ τe = 10−5 and 10−6. For Q > Q∗ we
see that 〈Z〉/γ̇ τe is independent of γ̇ τe, thus confirming that
〈Z〉 ∝ γ̇ τe. For Q < Q∗, however, the curves separate, with
the smaller γ̇ τe = 10−6 curve lying above the γ̇ τe = 10−5

curve; this indicates that 〈Z〉 is decreasing less rapidly than
γ̇ τe, as implied by the behavior of νcoll in Fig. 11(b). We also
see that 〈Z〉 is nonmonotonic in Q. This is a reflection of the
increase in νcoll with increasing Q at large Q, and the increase
in τdur with decreasing Q at small Q.

One can ask what is the mechanism by which increasing
the packing fraction φ results in an increase in the threshold
Q∗ below which normal relative motion is damped out, and
the contact number 〈Z〉 decreases more slowly with γ̇ τe.
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FIG. 12. Comparison of average particle contact number 〈Z〉
(open symbols) with 2τdurνcoll (solid symbols) vs Q at packing fraction
φ = 0.78 for strain rates γ̇ τe = 10−4, 10−5, and 10−6.
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FIG. 13. (a) Average contact number 〈Z〉 vs strain rate γ̇ τe at
φ = 0.78, for different values of Q. The dashed line has slope of unity,
indicating a linear relation at large Q. (b) 〈Z〉/γ̇ τe vs Q for γ̇ τe =
10−5 (open symbols) and 10−6 (solid symbols) at several different
values of φ. Vertical arrows indicate the location of the crossover Q∗

at each different φ.

Our preliminary investigation into this question suggests the
following picture: for Q > Q∗ essentially all collisions are
isolated binary collisions, where only two particles are in
contact during any given collision; for Q < Q∗, however, we
find that collisions become correlated, so that many collisions
involve multiple particles in mutual contact. The number of
such mutually contacted particles is found to grow as the
density φ increases. Such an effect is presumably related to the
decreasing free volume available to the particles as φ increases,
and serves to renormalize the dissipative mechanism for
damping relative normal motion, which leads to the increasing
Q∗ as φ increases. We leave further detailed exploration of
this effect to future work.

As a final note, we have denoted the Q < Q∗ region, where
the dissipative coupling kd is large, as strongly inelastic (and
Q > Q∗ as weakly inelastic) in analogy to the behavior of
an isolated colliding pair. This analogy is supported by our
results in Fig. 11(a), where we see that the collision duration
time τdur is small and constant for Q > Q∗, but grows rapidly
once Q decreases below Q∗. But this nomenclature is perhaps
misleading in one respect. The rate of energy dissipation per
volume in the system is � = σ γ̇ = m0Bσ γ̇ 3. From Fig. 1(b) or
Fig. 6(b) we see that Bσ , and hence �, increases as Q increases
into the weakly inelastic region. Thus, dissipation is smaller in
the strongly inelastic region than it is in the weakly inelastic
region, contrary to what one might naively expect. The reason
for this behavior is given by Fig. 10. In the region Q < Q∗ the
many particle steady state arranges itself so that collisions
tend to involve only tangential relative motion. Since the

012902-9
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dissipative force of Eq. (3) depends only on the difference of
the normal components of the particles’ velocities, little energy
is dissipated in such collisions. Our terminology “strongly
inelastic” for Q < Q∗ thus refers specifically to the effect of
a collision on the normal component of the relative motion
of the colliding particles; tangential relative motion remains
undamped at any Q.

D. Granular constitutive equations

In the previous sections we have discussed the dependence
of quantities on the packing fraction φ, as appropriate for
systems at constant volume. In the literature on hard granular
materials, where pressure is often the regarded as the control
parameter rather than volume, it is common to express
quantities as a function of the inertial number I [21–25],

I ≡ γ̇√
p/m0

= 1√
Bp

, (20)

rather than the packing fraction φ. Since in the hard-core limit
Bp is independent of γ̇ and depends only on φ and Q, we have
I (φ,Q), which can be inverted to write as φ(I,Q). We thus
can regard I rather than φ as the control parameter; thus, in
the hard-core limit, I is independent of the separate values of
γ̇ and p, and depends only on the combination as above in
Eq. (20). Moreover, since in the hard-core limit Bσ is also a
function of only φ and Q, we can substitute for φ in terms of I

and write Bσ (I,Q). We thus get the macroscopic friction μ =
σ/p = Bσ/Bp as a function of I and Q. The two functions
φ(I,Q) and μ(I,Q) are known as the constitutive equations.
The jamming point corresponds to I → 0 (i.e. Bp → ∞).

For sufficiently small I close to jamming, it is observed
empirically that the functions φ(I,Q) and μ(I,Q) can be
written in the following form,

φ(I ) = φJ − cφI a, μ(I ) = μJ + cμI b. (21)

At the level of an empirical result, the coefficients cφ and
cμ and exponents a and b might depend on Q; however we
will argue below that as I → 0, these parameters are in fact
independent of Q.

It is often argued [22–24] that φ and μ are linear in the
inertial number I , i.e., a = b = 1, for small I . However, the
evidence for such linear behavior seems to be best found
in systems in which there is a microscopic interparticle
friction [21,32]. For frictionless particles, such as we consider
here, Peyneau and Roux [25] considered a strongly inelastic
system and found, from fits to a range 10−5 � I � 10−2, the
exponents a ≈ b ≈ 0.4. Earlier work by da Cruz et al. [21]
similarly found μ to be sublinear in I at small I for frictionless
particles. Later work by Bouzid et al. [32] claimed b = 1/2,
based on fits to a range 4 × 10−4 � I � 10−1, for strongly
inelastic frictionless particles.

In Ref. [5] we have shown that, in the asymptotic limit
I → 0, the form of the constitutive equations of Eq. (21)
follows directly from the algebraic divergence of Bp and Bσ
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FIG. 14. (a) Packing fraction φ vs inertial number I = γ̇ /
√

p/m0

for various values of Q. Straight lines are linear fits to the data. (b)
Same as panel (a) but plotted as φ − φJ vs I on a log-log scale,
where φJ = 0.843 35 is taken from Ref. [5]. Solid lines correspond to
power-law relations φJ − φ ∝ I aeff with aeff = 1.5 and 0.6 as shown.
Symbols in panel (b) correspond to the legend in (a). Results are for
a strain rate of γ̇ τe = 10−5.

as φ → φJ , and the exponents a and b of the constitutive
equations are related to the exponents β and ων of Eq. (18) by,

a = 2/β, b = 2ων/β = ωνa. (22)

In Ref. [5] we found ων ≈ 1 and β ≈ 5, thus suggesting a =
b = 2/β ≈ 0.4, in agreement with Peyneau and Roux [25].
Since we have argued in Sec. III B that the jamming transition
always takes place within the strongly inelastic region φ >

φ∗(Q), where behavior is independent of the parameter Q,
this then implies that the constitutive equations (21) likewise
must be independent of Q, for sufficiently small I ; hence we
conclude that all the parameters that appear in Eq. (20) are
independent of Q as I → 0.

The above discussion was concerned with behavior asymp-
totically close to the jamming point I → 0. It is interesting to
now consider how the functions φ(I,Q) and μ(I,Q) behave
as I increases out of the asymptotic small I region where
Eq. (21) holds, and in particular when the system crosses
into the weakly inelastic region φ < φ∗(Q). In Fig. 14(a)
we plot packing fraction φ vs inertial number I for various
values of Q at a strain rate γ̇ τe = 10−5. From our results in
Sec. III A we know this γ̇ τe is small enough to put one in the
hard-core limit for the range of parameters considered here. On
the linear-linear scale of Fig. 14(a), the data look qualitatively
like the results of da Cruz et al. [21], and at moderate to high
values of Q the data appear well approximated by a linear
fit (the solid lines in the figure) over the wide range of I
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shown. But if one looks closely at the data at the smallest I ,
approaching φJ , one finds that these linear fits are really not
doing very well. We see this explicitly in Fig. 14(b), where
we plot φJ − φ vs I on a log-log scale; we use φJ = 0.843 35
from our earlier work in Ref. [5]. We see that the slopes of
the data at small I are not in general equal to unity, the value
expected if we had the exponent a = 1. Figure 14(b) is just the
analog of Fig. 7(a), and as found there, the curves at different
Q all approach a common curve, characteristic of the strongly
inelastic region φ > φ∗(Q), as one gets sufficiently close to
the jamming point I → 0.

We may try to empirically fit our small I data in Fig. 14(b)
to the form of Eq. (21). But since our data is not sufficiently
close to the asymptotic I → 0 limit, rather than finding the true
asymptotic critical exponent a we will find for each Q only
an effective power-law exponent aeff , which depends both on
the value of Q and the range of I used in the fit. We see from
Fig. 14(b) that, for our range of data, this aeff ranges from
about 0.6 at our smallest Q to 1.5 at our largest Q. That we
find aeff ≈ 0.6 at the smallest Q, rather than the value 0.4
expected by our work in Ref. [5] and as found by Peyneau and
Roux [25], is simply because our small Q data, though already
in the strongly inelastic region, is not at sufficiently small I to
be in the true asymptotic jamming critical region. We thus see
that, as with βeff of Fig. 7(a), the value of aeff for a finite range
of I can be strongly affected by the value of Q.

Finally, we consider the macroscopic friction μ = σ/p.
In Fig. 15 we plot μ vs I for different Q at the strain rate
γ̇ τe = 10−5. Again we see that curves for different Q approach
a common curve characteristic of the strongly inelastic region
φ > φ∗(Q), as one gets close to jamming, I → 0. But as I

increases, the curves peel away from this common curve at
an I ∗(Q) that decreases as Q increases. Similar results were
found by Lois et al. [33]. Figure 15 is just the analog of
Fig. 8, and again we see that for large Q, μ can decrease
below the value μJ at jamming as I increases. Fitting our data
for the smallest Q = 0.1 in Fig. 15 to the form of Eq. (21),
and taking μJ = 0.093 from Ref. [5], we find the exponent
beff = 0.46 ± 0.02. This is larger than the expected b ≈ 0.4 in
the asymptotic limit I → 0 [5,25], but close to the value 1/2
found by Bouzid et al. [32]. As with βeff and aeff , the value of
beff depends on the range of I over which one fits, and may
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FIG. 15. Macroscopic friction μ = σ/p vs the inertial number
I = γ̇ /

√
p/m0 for various Q. Results are for a strain rate of γ̇ τe =

10−5. The dashed line is a fit to the form μ = μJ + cμI beff , with fixed
μJ = 0.093 from Ref. [5], and gives the value beff ≈ 0.46.

be influenced by the value of Q if part of the fitted data lies
outside the strongly inelastic region.

IV. CONCLUSIONS

We have investigated the shear-driven Bagnold rheology of
a simple model of athermal, soft-core, bidisperse, frictionless
disks in two dimensions, as a function of the packing fraction
φ and a parameter Q that controls the elasticity of collisions.
We have shown that there is a Q∗(φ) that marks a sharp, but
nonsingular, crossover from a region characteristic of strongly
inelastic collisions (Q < Q∗), where normal relative motion
of particles is strongly damped and the resulting relative
motion is mostly tangential, to a region characteristic of weakly
inelastic collisions (Q > Q∗). In the strongly inelastic region,
transport coefficients are independent of the value of Q, while
in the weakly inelastic region, transport coefficients grow
algebraically with increasing Q. We have presented evidence
that Q∗(φ) diverges as φ → φJ , the jamming transition, thus
arguing that sufficiently close to φJ one is always in the
strongly inelastic region. As a consequence, the value of φJ ,
and the critical exponents that characterize the divergence of
the Bagnold transport coefficients, do not depend on the value
of Q. However, we have also shown that effective exponents,
obtained from fitting over windows of data wider than the true
asymptotic region close to φJ , can vary depending on the width
of the data window and the value of Q.

We have shown that the weakly inelastic region is charac-
terized by a collision rate νcoll and an average particle contact
number 〈Z〉 that scale linearly with the strain rate γ̇ , while
the duration time of collisions τdur is largely independent of Q

and γ̇ . Deep in the weakly inelastic region (i.e., nearly elastic),
collisions are uniformly distributed over all impact parameters,
and particles tend to bounce off each other after they collide.

In the strongly inelastic region, the collision rate νcoll and
contact number 〈Z〉 still vanish as γ̇ → 0, but they decrease
more slowly than linearly in γ̇ . As Q decreases into the
strongly inelastic region, the collision duration time τdur grows
rapidly, and collisions increasingly involve tangential relative
motion between particles.

We believe that this crossover to tangential relative motion
as Q decreases is a result of two different effects: (i) the
damping out of particles’ relative motion in the normal
direction due to the dissipative force of Eq. (3), and (ii) the
decreasing free volume available for particle motion as the
packing fraction φ increases; this also greatly restricts relative
motion in the normal direction, but less so for tangential
relative motion. We believe it is this second effect that is
responsible for the divergence of Q∗ as φ → φJ .

We have also examined the macroscopic friction μ in our
model and find that, while μ in the strongly inelastic region
increases as φ decreases (or as inertial number I increases),
once one enters the weakly inelastic region μ can decrease
as φ further decreases (or as I further increase) and even fall
below the value μJ at jamming.

To summarize, we have shown that while the critical behav-
ior asymptotically close to jamming is always characteristic
of the strongly inelastic region, and so independent of the
elasticity of collisions Q, the effect of collision elasticity can
be clearly seen as one moves away from jamming.
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γτe = 10−5.
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FIG. 16. The relative anisotropy in pressure, δp/p, vs Q for
different values of packing fraction φ. The shear strain rate is
γ̇ τe = 10−5 and the system has N = 1024 particles. The value of
φ increases as the curves go from top to bottom.
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APPENDIX

In this Appendix we provide numerical results for the
anisotropy in pressure,

δp ≡ 1
2 [〈pxx〉 − 〈pyy〉], (A1)

and the deviatoric stress,

σdev ≡
√

δp2 + σ 2, (A2)

where σ = −〈pxy〉. The eigenvalues of the stress tensor are
just p ± σdev, so a finite δp results in a slight shift in the

γτe = 10−5.
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FIG. 17. The relative difference between deviatoric shear stress
and off-diagonal stress, (σdev − σ )/σ , vs Q for different values of
packing fraction φ. The shear strain rate is γ̇ τe = 10−5 and the system
has N = 1024 particles. The value of φ increases as the curves go
from top to bottom.

orientation of the principle axes of the stress tensor from those
of the strain tensor.

In Fig. 16 we plot δp/p vs Q for several different packing
fractions φ. Our results are for a system with N = 1024
particles and a shear strain rate of γ̇ τe = 10−5. We see that
for all φ, δp/p is very small at high Q. However, for small
Q � 10, δp/p can be of the order 5 − 12% at the smaller
values of φ. We find that the contribution to δp from the
dissipative part of the pressure tensor is always negligible,
while the elastic part contributes roughly twice as much as the
kinetic part at low φ; as φ decreases, the relative contribution
of the kinetic part tends to increase.

In Fig. 17 we show the corresponding results for
(σdev − σ )/σ . Here we see that this quantity is fairly small
everywhere, reaching its largest value of ∼2% for the
smallest φ = 0.60 at small Q � 1. We can understand why
(σdev − σ )/σ is small by writing,

σdev − σ

σ
=

√√√√[(
δp/p

σ/p

)2

+ 1

]
− 1. (A3)

Comparing Fig. 16 with Fig. 8, we see that where δp/p is
largest, σ/p = μ is also largest, with the result that the first
factor under the square root is always small.
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