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Dissipation and velocity distribution at the shear-driven jamming transition
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We investigate energy dissipation and the distribution of particle velocities at the jamming transition for
overdamped shear-driven frictionless disks in two dimensions at zero temperature. We find that the dissipation
is caused by the fastest particles and that the fraction of particles responsible for the dissipation decreases
towards zero as jamming is approached. These particles belong to an algebraic tail of the velocity distribution
that approaches ∼v−3 as jamming is approached. We further find that different measures of the velocity diverge
differently, which means that concepts such as typical velocity may no longer be used, a finding that should have
implications for analytical approaches to shear-driven jamming.

DOI: 10.1103/PhysRevE.93.042614

I. INTRODUCTION

The hypothesis that the slowing down of the dynamics in
systems as different as supercooled liquids, granular materials,
colloids, foams, and emulsions, having a common origin in
the properties of a critical point, point J [1], has inspired
a great amount of work on jamming in the past decade.
Several models have been used to try to pinpoint the properties
of this jamming transition. Some of them have centered
around a greatly simplified numerical model of spheres with
contact-only interaction. One important branch has been to
examine the properties of randomly generated static pack-
ings [2], whereas another has been to study the jamming
transition through simulations of elastic particles under steady
shear [3].

A key feature of jamming is the approach of the contact
number z to the isostatic number ziso, which is just enough for
mechanical stability. It has recently been shown [4] that this is
directly linked to the divergence of ηp ≡ p/γ̇ , the pressure
equivalent of the shear viscosity. A related phenomenon
is the increase in particle velocity as φ → φJ [5,6]. This
is related to the distribution of particle displacements due
to a small shear increment that has been determined both
in experiments of sheared granular materials [7] and in
quasistatic simulations [5,7]. It was there found that this dis-
tribution is sufficiently wide that the non-Gaussian parameter
〈�y4〉/3〈(�y)2〉 − 1 diverges as φJ is approached from below,
granted that the shear step is sufficiently small.

In this paper we show that there is more to the particle
velocity distribution than has so far been realized. Dissipation
is mainly caused by the fastest particles and we find that
the fraction of particles that are responsible for the dissi-
pation decreases towards zero as jamming is approached.
This behavior is related to an algebraic tail P (v) ∼ v−3

in the velocity distribution and we show that the velocity
histograms determined at the jamming density approach this
limiting behavior as γ̇ → 0. Since rheology and dissipation
are linked through power balance, the understanding of this
phenomenon is right at the center of the phenomenon of shear-
driven jamming. Furthermore, a close look at the velocity
distribution shows that its behavior implies that different
measures of the velocity behave differently, which should
have a profound consequence for analytical approaches to
jamming, since concepts such as typical velocity then become
useless.

II. MODEL AND SIMULATIONS

Following O’Hern et al. [2], we use a simple model of
bidisperse frictionless soft disks in two dimensions with equal
numbers of disks with two different radii in the ratio 1.4.
Length is measured in units of the diameter of the small
particles ds . We use Lees-Edwards boundary conditions [8]
to introduce a time-dependent shear strain γ = t γ̇ . With
periodic boundary conditions on the coordinates xi and yi

in an L × L system, the position of particle i in a box with
strain γ is defined as ri = (xi + γyi,yi). The ordinary velocity
is vtot

i = ṙi , but in the following we consider the nonaffine
velocity vi = vtot

i − vR(ri), where vR(ri) ≡ γ̇ yi x̂ is a uniform
shear velocity. With rij the distance between the centers of
two particles and dij the sum of their radii, the relative overlap
is δij = 1 − rij /dij and the interaction between overlapping
particles is V (rij ) = εδ2

ij /2; we take ε = 1. The force on
particle i from particle j is fel

ij = −∇iV (rij ). The simulations
are performed at zero temperature.

We consider two different models for the energy dissipation.
In both cases the interaction force is fel

i = ∑
j fel

ij , where the
sum extends over all particles j in contact with i and the
equation of motion is

fel
i + fdis

i = mi r̈i . (1)

Most of our simulations have been done with the RD0

(reservoir dissipation) model with the dissipating force

fdis
RD,i = −kdvi . (2)

We take kd = 1, mi = 0, and the time unit τ0 = dskd/ε. We
simulate N = 65 536 particles with shear rates down to γ̇ =
10−10. Checking for finite-size effects at γ̇ = 10−9, we found
no difference when using instead N = 262 144. The equations
of motion were integrated with the Heuns method with time
step �t = 0.2τ0.

Some additional simulations have also been done with
the CD0 (contact dissipation) model with dissipation due to
velocity differences of disks in contact [3,9]. Details of these
simulations may be found elsewhere [10].

III. RESULTS

A. Dissipation and the fastest particles

A key quantity in the present paper is the energy dissipation.
We here just remark that this is a central quantity due to
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the relation between dissipation and rheology from power
balance V σ γ̇ = kd〈

∑
i v2

i 〉 [11] and we therefore believe that
the considerations here may be instrumental in developing a
better understanding of shear-driven jamming.

Our first key result is that most of the energy is dissipated
by a small fraction of fast particles and, furthermore, that the
fraction of particles needed to dissipate a given part of the
power decreases as jamming is approached. Note that “fast”
is here used in a relative sense. For low γ̇ all particles are
slow, it is only v/γ̇ that can be big. To study the dissipation
we introduce the velocity distribution function Pv(v) such that
Pv(v)dv is the fraction of particles with velocity v � |v| < v +
dv. Figure 1(a) shows Pv(v) vs v/γ̇ both at five densities below
φJ and for three different shear rates at φJ . (To get histograms
of good quality down to small Pv we use bins that are equally
spaced in ln v.) The different simulation parameters (φ,γ̇ )
and their corresponding symbols are shown in the inset of
Fig. 1(a). The points connected by solid lines and dashed lines,
respectively, show two different ways to approach jamming.
The solid line connects (φ,γ̇ ) at φ < φJ and at sufficiently
low γ̇ to be very close to the hard disk limit. The dashed line
connects three points at φ = 0.8433 ≈ φJ . Here jamming is
approached as γ̇ → 0.

To study the dissipation with focus on the fast particles we
define

x(v) =
∫ ∞

v

Pv(v′)dv′, C̄2(v) =
∫ ∞

v

Pv(v′)v′2dv′ (3)

such that x(v) is the fraction of fast particles with |v| > v and
kdC̄2(v) is the dissipating power due to the same particles.
We also define C2(x) = C̄2(v(x)), where v(x) is the inverse of
x(v). Figure 1(b) shows the normalized C2 vs x for the data in
Fig. 1(a). The faster particles always dominate the dissipation,
but this effect becomes more pronounced—the curves get
steeper—as jamming is approached; a smaller fraction of
particles is then needed for a given part of the dissipation.
As a simple quantitative measure we introduce x50, shown in
the inset of Fig. 1(b), as the fraction of the fastest particles
that dissipates 50% of the power. For the hard disk limit (solid
line) x50 decreases as φ increases towards φJ . The behavior of
x50 at φ = 0.8433 ≈ φJ is shown by the open squares in the
inset of Fig. 1(c); x50 decreases with decreasing γ̇ and gets as
low as 0.16% at the lowest shear rate γ̇ = 10−10. We believe
that this localization of the dissipation to a few faster particles
is related to plastic events or avalanches that are found above
φJ , as already speculated by others [5].

Figure 1(c) shows that the CD0 model behaves similarly. In
this model it is the velocity differences of contacting particles
that is the quantity of interest rather than the nonaffine velocity,
and C2 is defined analogously. The main data in Fig. 1(c)
are C2(x) at φJ for the CD0 model, which are very similar
to the three data sets at φJ in Fig. 1(a). As a more detailed
comparison, the inset of Fig. 1(c) shows x50 against γ̇ at φJ

for both the RD0 model and the CD0 model and it is clear that
this fraction decreases with decreasing γ̇ in both models. The
effect studied here is thus not just peculiar to the simpler RD0

model [12].
The evidence from Fig. 1 strongly suggests that C2(x)/

C2(1) approaches a step function as φ → φJ and γ̇ → 0
and this is the main result from the first part of this paper.

For C2(x)/C2(1) to approach a step function the limiting
distribution has to have a tail

Pv(v) ∼ v−3, (4)

since that would make C2(v) diverge. We note that experiments
on dense granular flows have led to similar conclusions [13].
Before turning to more elaborate analyses, we note that the
dashed line in Fig. 1(a) with slope equal to −3 gives some
support for Eq. (4) as the limiting behavior at φJ as γ̇ → 0.

For the further analysis it is important to understand the
origin of the wide distribution. We note that the nonaffine
velocity in the RD0 model is related to the sum of all (repulsive)
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FIG. 1. Velocity distribution and dissipation. (a) Velocity distri-
bution function Pv(v) vs v/γ̇ with simulation parameters (φ,γ̇ ) and
symbols as shown in the inset. The dashed line has slope −3. (b)
Part of the dissipated power that is dissipated by the fraction x of the
fastest particles. (c) Same quantity for the CD0 model. These data are
at φ = 0.8433 ≈ φJ and five different shear rates. The insets of (b)
and (c) are x50, the fraction of particles needed to dissipate 50% of the
power. The inset of (b) shows that x50 for the RD0 model decreases
as φ increases, whereas the inset of (c) shows x50 at φJ decreasing
with γ̇ for both RD0 and CD0.
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contact forces that act on the particle. The nonaffine velocity
of particle i is vi = ∑

j fel
ij /kd . Close to jamming, the forces

on most particles almost cancel one another out and the total
force is typically very small compared to the average force,
f el

i 
 f el
ij , as has also been noted by others [14]. There are,

however, some particles for which the forces do not balance
one another out and the velocity of these particles can then be
much larger than the average velocity. The wide distribution
is thus due to the big difference between the individual forces
and the typical total force.

A consequence of this picture is that the maximum velocity
is bounded by the typical f el

ij , which means that the possibly
algebraic distribution is cut off by an exponential factor e−v/vc ,
where vc ∼ f el

ij /kd ∼ p/kdds . (This also suggests vc/γ̇ ∼
ηp.) This behavior is seen in Fig. 1(a) as the approximately
rectilinear (i.e., algebraic) behaviors for intermediate values
of Pv(v) turn into more rapid decays at higher velocities. One
therefore expects the tails in the distributions to be described
by P (v) ∼ v−re−v/vc and this exponential decay becomes a
complicating factor when one attempts to determine r from
P (v).

B. Different measures of the velocity

Our second key result is that different measures of the ve-
locity behave differently. This is important since it means that
concepts such as typical velocity, used in various theoretical
approaches, become useless. Figure 2 shows simulation results
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FIG. 2. Two different measures of the velocity: ṽrms and ṽ1 for (a)
φ = 0.8433 ≈ φJ vs γ̇ and (b) data below φJ plotted vs distance to
jamming; only the points with φJ − φeff < 0.006 were used for the
fits. Here φeff is the effective density. The lines are ∼ (φJ − φeff )−uv

and ∼ (φJ − φeff )−β/2. (c) Plot connects back to Fig. 1(a) but is C2,
related to ṽ2

rms, against C1, which is related to ṽ1. From the crossings
of the dashed line one may read off the relative contribution to ṽ1

from the fraction of the fastest particles that dissipate 50% of the
energy, a quantity that decreases with decreasing γ̇ .

for ṽ1 and ṽrms, defined through

ṽ1 = 〈|ṽ|〉, ṽ2
rms = 〈ṽ2〉, (5)

with the notation ṽ = v/γ̇ . In Fig. 2(a) these quantities are
plotted against γ̇ and are found to diverge algebraically
with different exponents: ṽrms ∼ γ̇ −β/2zν ∼ γ̇ −0.34 and ṽ1 ∼
γ̇ −uv/zν ∼ γ̇ −0.28. [The expressions follow by taking b =
γ̇ −1/z in O(φ,γ̇ ) = buO/νgO((φJ − φ)b1/ν,γ̇ bz) [15] with the
scaling dimension uO equal to uv for ṽ1 and β/2 for ṽrms. The
latter follows from η ∼ ṽ2

rms and η(φ,γ̇ → 0) ∼ (φJ − φ)−β .]
It is instructive to also examine the same quantities with

data below φJ , close to the hard disk limit. The starting
point is the relations for hard disks ṽHD

1 (φ) ∼ (φJ − φ)−uv

and ṽHD
rms(φ) ∼ (φJ − φ)−β/2 that follow by using b = γ̇ in the

scaling expressions and considering γ̇ → 0. In Fig. 2(b) we
make use of the effective-density mapping of soft disks onto
hard disks OHD(φeff) = O(φ,γ̇ ), where the effective density is
φeff = φ − cE1/2y , with c = 1.53 and y = 1.09, as detailed in
Ref. [16]. Figure 2(b) shows ṽ1 and ṽrms against φJ − φeff .
The solid line gives the exponent uv = 1.10 in agreement
with �� ∼ (φJ − φ)−1.1 for the particle velocity in Ref. [5].
The dashed line gives β/2 = 1.25. (The value β = 2.50 is
somewhat low in comparison to recent estimates [15], but this
could be due to not including corrections to scaling [15].) Note
that the exponents from Figs. 2(a) and 2(b) are consistent when
using 1/zν = 0.26 [15].

The reason for the different behaviors of ṽ1 and ṽrms is
that the dominant contribution to these quantities comes from
different velocity intervals. This is illustrated in Fig. 2(c),
which shows how C2(x) in Eq. (3) and C1(x) (for v1 instead
of v2) increase to their respective limits C2(1) = ṽ2

rms and
C1(1) = ṽ1, as x (the fraction of the fastest particles included
in the calculations) increases. The different curves get steeper
for smaller γ̇ and for γ̇ = 10−10 we find C1(x) ≈ 0.05 when
C2(x) = 0.5, which thus shows that ṽ2

rms gets a considerably
larger contribution from the highest velocity part of the
histogram than ṽ1. An extrapolation of these curves to the
γ̇ → 0 limit would give a step function (though this is not as
clear as in Fig. 1), which would imply that ṽ2

rms and ṽ1 were
controlled by different velocity intervals and that there would
be no reason for these quantities to be at all related.

C. Analysis of the velocity distribution function

We will now relate our two key results of Figs. 1 and 2 to
properties of the velocity distribution function with the goals (i)
to examine how the exponent in Eq. (4) approaches −3 as γ̇ →
0 (this exponent will be denoted by −r) and (ii) to shed some
more light on the mechanism that allows ṽ1 and ṽrms to diverge
differently. We have then found it convenient to use P (ṽy),
the distribution of the absolute value of the y component. This
quantity differs from Pv in that it approaches a constant at
small velocities, which is a feature that makes it easier to find
an analytical expression that fits the data. Figure 3(a) shows
P (ṽy) for several different γ̇ at φ = 0.8433 ≈ φJ together
with solid lines that are fits to the expression

P (ṽy) = A e−ṽy /ṽc

1 + (ṽy/ṽa)2 + (ṽy/ṽs)r
, (6)
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FIG. 3. Velocity distribution and fitting parameters for different
γ̇ at φ = 0.8433 ≈ φJ . (a) Velocity distribution P (ṽy). (b) Plot of
r − 3 vs γ̇ from fitting to Eq. (6). Fitting r − 3 ∼ γ̇ qr for 10−9 �
γ̇ � 5 × 10−7 gives qr = 0.09 ± 0.02. (c) Shear rate dependence of
the velocity scales in Eq. (6). (d) Plot arguing that there is no limiting
velocity distribution function by showing the measured P (ṽy) for
γ̇ = 10−9 together with extrapolated P (ṽy) for two even lower shear
rates γ̇ = 10−14 and 10−19.

with A, ṽc, ṽa , ṽs , and r as free parameters. This expression
crosses over from a constant at small ṽy to a large-ṽy tail with
ṽ−r

y e−ṽy/ṽc (as discussed above) and the crossover is governed
by an additional term in the denominator, (ṽy/ṽa)a . For best
possible fits, a should be an additional free parameter, but
since a anyway tends to be close to 2 and a = 2 opens up for
analytical calculations, we here fix a = 2. Figure 3(b) shows
the exponent of the algebraic tail as r − 3 vs γ̇ . The rectilinear
behavior suggests that r decays algebraically to 3, consistent
with the limiting behavior of Eq. (4), as r − 3 ∼ γ̇ qr with qr =
0.09 ± 0.02. Figure 3(c) shows the three different velocity
scales in Eq. (6) and their dependences on γ̇ : ṽa ∼ γ̇ −qa , ṽs ∼
γ̇ −qs , and ṽc ∼ γ̇ −qc , with the exponents qa = 0.18, qs = 0.29,
and qc = 0.72. The Appendix shows analytical calculations of
ṽ1 and ṽrms based on these γ̇ dependences together with an
approximation of Eq. (6).

The common belief that ṽ1 and ṽrms would diverge in the
same way is related to the expectation of a limiting velocity
distribution function as γ̇ → 0. We therefore stress that a
consequence of the differing behaviors of ṽa and ṽs is a velocity
distribution function that keeps changing with γ̇ and never
approaches any limiting function. To illustrate how this could
happen, we will show some extrapolated data for very small γ̇ ,
even though such extrapolations can never be entirely reliable.
Figure 3(d) thus shows the measured P (ṽy) vs ṽy/ṽa for
γ̇ = 10−9 together with two data sets calculated for γ̇ = 10−14

and 10−19 from Eq. (6), by extrapolating the parameters in this
equation according to the fitting lines in Figs. 3(b) and 3(c).
The straight lines in Fig. 3(d) are ∼ṽ−r

y with different r and
we see that the data cross over from A/[1 + (ṽy/ṽa)2] to these
respective algebraic behaviors, at larger ṽy/ṽa , as γ̇ decreases.
Since a large amount of the dissipation takes place in the
algebraic tail, this tail can never be neglected and we thus
conclude that there is in effect no limiting velocity distribution
function.

We now turn to the crossover velocity ṽcr = (ṽr
s /ṽ

2
a)1/(r−2)

that describes the crossover from exponent −2 to exponent
−r , which is obtained by equating the two velocity-dependent
terms in the denominator of Eq. (6). This quantity is shown
by the big open circles in Fig. 3(a), which are P (ṽcr) vs ṽcr

for γ̇ = 10−9 and 10−10. These are the last two points in a
persistent trend to smaller P (ṽcr), which shows that the fraction
of particles in the algebraic tail decreases with γ̇ . This also
echoes the conclusion from Fig. 1 that the fraction of particles
that are responsible for the dissipation decreases with γ̇ .

The connection between the algebraic tail and the dissipa-
tion is made more direct by Fig. 4(a), which shows that ṽcr and
ṽ50 behave essentially the same. Here ṽ50, related to x50 above,
is the velocity above which 50% of the dissipation takes place
and we may therefore conclude that the particles in the tail are
responsible for well above 50% of the dissipation.

From Fig. 4(a) we may also conclude that the size of this
algebraic tail increases with decreasing γ̇ . Since ṽcr and ṽc
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ṽ c
r,
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FIG. 4. Comparison of different velocity scales. (a) Plot of ṽcr,
which is the velocity scale for the crossover to the algebraic tail
∼ ṽ−r

y , together with ṽ50, which is the velocity above which 50%
of the dissipation takes place, and the cutoff velocity ṽc. The similar
behaviors of ṽcr and ṽ50 show that a large part of the dissipation occurs
in the algebraic tail and the increasing distance between ṽc and ṽcr

shows that this tail becomes wider as γ̇ → 0. (b) Plot confirming
the expectation that the pressure (note that ηp ≡ p/γ̇ ) and the cutoff
velocity are directly related.
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mark the onset and the end of this tail, the increasing distance
between these points (open circles and open squares) means
that the size of the algebraic region increases as γ̇ → 0. We
thus find that this tail widens even though it involves a smaller
number of particles as γ̇ decreases.

It is also interesting to note that ṽc and ηp in Fig. 4(b)
behave essentially the same. This is also in agreement with the
above discussion of the origin of the wide distribution, where
we argued that the maximum velocity has to be bounded by
the typical force in the system, which in turn is related to the
pressure. We also finally remark that the combination of an
algebraic decay and an exponential cutoff makes it difficult to
get good precision in the determination of the exponent for
the decay. This effect is most problematic at the lowest shear
rate γ̇ = 10−10 and this point was therefore not included in the
above determination of qr . The difficulty to determine r with
good precision is related to the covariation of r and ṽc, which
is seen in Figs. 3(b) and 3(c). The reason for this effect is that
a small decrease in r can be compensated by a small decrease
in ṽc since a smaller r gives a slower decay, while a smaller ṽc

gives a faster decay.

IV. SUMMARY

To summarize, we have found that the fraction of particles
that are responsible for the energy dissipation decreases
towards zero as jamming is approached. These particles
belong to a tail in the velocity distribution that approaches
P (v) ∼ v−3 at jamming. We further found that different
measures of the velocity diverge differently, which means
that concepts such as typical velocity no longer appear to
be useful. We have demonstrated this by arguing in Fig. 2(c)
that ṽ1 and ṽrms get their contributions from different parts
of the velocity histogram, by demonstrating that the shape of
the velocity distribution keeps changing when γ̇ decreases,
without approaching any limiting velocity distribution, and
finally with analytical calculations in the Appendix.
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APPENDIX: ANALYTICAL CALCULATIONS

The purpose of the calculations below is to illustrate the
mechanism that gives different behaviors for ṽ1 and ṽrms.
The idea is here to split the expression for the velocity
distribution (6) into three different parts

P (ṽy) ∼
⎧⎨
⎩

1/[1 + (ṽy/ṽa)2], 0 � ṽy < ṽcr

1/(ṽy/ṽs)r , ṽcr < ṽy < ṽc

0, ṽc < ṽy.

(A1)

We may then determine ṽ1 = 〈ṽy〉 and ṽ2
rms = 〈ṽ2

y〉 by calcu-
lating some integrals analytically.

To determine ṽ1 = 〈ṽy〉 and ṽ2
rms = 〈ṽ2

y〉 we need the
integrals I0, I1, and I2,

Ip =
∫

P (ṽy)ṽp
y dṽy,

which with Eq. (A1) becomes

Ip =
∫ ṽcr

0

ṽ
p
y

1 + (ṽy/ṽa)2
dṽy +

∫ ṽc

ṽcr

ṽp
y (ṽy/ṽs)

−rdṽy .

It is then convenient to consider the two terms above separately.

1. First term I (1)
p

We here use x = ṽy/ṽa , dx = dṽy/ṽa , and xcr = ṽcr/ṽa

and handle the different integrals separately for different p:
For p = 0,

I
(1)
0 = ṽa

∫ xcr

0

1

1 + x2
dx = ṽa[arctan x]xcr

0

= ṽa arctan(ṽcr/ṽa); (A2)

for p = 1,

I
(1)
1 = ṽ2

a

∫ xcr

0

x

1 + x2
dx = ṽ2

a

[
1

2
ln(1 + x2)

]xcr

0

= ṽ2
a

2
ln[1 + (ṽcr/ṽa)2]; (A3)

and for p = 2,

I
(1)
2 = ṽ3

a

∫ xcr

0

x2

1 + x2
dx = ṽ3

a[x − arctan x]xcr
0

= ṽ2
a ṽcr − ṽ3

a arctan(ṽcr/ṽa). (A4)

2. Second term I (2)
p

We here get an expression for general p:

I (2)
p = ṽr

s

[
ṽ

p+1−r
y

p + 1 − r

]ṽc

ṽcr

= ṽr
s

p + 1 − r

(
ṽp+1−r

c − ṽp+1−r
cr

)

= ṽ
p+1
s

r − 1 − p

[(
ṽs

ṽcr

)r−1−p

−
(

ṽs

ṽc

)r−1−p
]
.

This splits into two cases. If r − 1 − p � 0 (which is always
the case in our simulations) and ṽc � ṽcr (which allows us to
skip the second term) we make use of ṽr−2

cr = ṽr
s /ṽ

2
a to get

I (2)
p ≈ ṽ

p+1
s

r − 1 − p

(
ṽs

ṽcr

)r−1−p

= ṽ2
a ṽ

p−1
cr

r − 1 − p
. (A5)
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For r − 1 − p ≈ 0, on the other hand, (possible for p = 2 and
very close to jamming, r → 3), we get

I (2)
p ≈ ṽp+1

s

[
ln

(
ṽs

ṽcr

)
− ln

(
ṽs

ṽc

)]
= ṽp+1

s ln

(
ṽc

ṽcr

)
. (A6)

3. Both terms together I (1)
p + I (2)

p

The normalization becomes

I0 = ṽa arctan

(
ṽcr

ṽa

)
+ 1

r − 1

ṽ2
a

ṽcr
≈ π

2
ṽa, (A7)

where we skip the second term since ṽa/ṽcr 
 1. For the first
moment we get

I1 = ṽ2
a

2
ln

[
1 +

(
ṽcr

ṽa

)2
]

+ ṽ2
a

r − 2

≈ ṽ2
a

[
ln

(
ṽcr

ṽa

)
+ 1

r − 2

]
. (A8)

The logarithmic term may be written ln(ṽcr/ṽa) =
ln(γ̇ −qcr/γ̇ −qa ) ∼ (qcr − qa) ln(1/γ̇ ), and using qa ≈ 0.18 and
qcr ≈ 0.46, the average velocity becomes

ṽ1 = 〈
ṽy

〉 = I1/I0 ≈ ṽa

[
ln

(
ṽcr

ṽa

)
+ 1

r − 2

]

≈ ṽa

[
0.62 log10(1/γ̇ ) + 1

r − 2

]
. (A9)

For the second moment, for r not too close to 3, Eqs. (A4)
and (A5) lead to

I2 = ṽ2
a ṽcr

[
1 + 1

r − 3

]
− ṽ3

a arctan

(
ṽcr

ṽa

)
(A10)

and since arctan x < π/2, the second term may be neglected
and we get

ṽ2
rms = 〈

ṽ2
y

〉 ≈ ṽa ṽcr

[
1 + 1

r − 3

]
, (A11)

For the second moment, with r → 3, we instead use Eq. (A6),
which gives (with ṽcr ≈ ṽ3

s /ṽ
2
a and qc = 0.71)

ṽ2
rms = 〈

ṽ2
y

〉 ≈ ṽa ṽcr + ṽ3
s

ṽa

ln

(
ṽc

ṽcr

)
≈ ṽa ṽcr[1 + 0.58 log10(1/γ̇ )] (A12)

and shows that the effect of the cutoff ṽc is to replace the
divergence ∼1/(r − 3) in Eq. (A11) with a slow logarithmic
increase.

4. Small-γ̇ limit

From Eq. (A12) the leading small-γ̇ behavior for ṽrms

becomes ṽ2
rms ∼ ṽaṽcr ∼ γ̇ −(qcr+qa )/2 ∼ γ̇ −0.64, in very good

agreement with ṽrms ∼ γ̇ −0.34 in Fig. 2(a). For ṽ1, the full
expression in Eq. (A9) reproduces the exponent −0.28 in
Fig. 2(a) for the same range of γ̇ . In the γ̇ → 0 limit,
however, the second term may be neglected and the slowly
changing logarithm may be replaced by a constant. This gives
ṽ1 ∼ ṽa ∼ γ̇ −qa ∼ γ̇ −0.18, which is clearly different from the
measured exponent −0.28. We do however consider the
exponent obtained directly from the measured data to be more
reliable since it is from an excellent fit to data across four orders
of magnitude in γ̇ . We note that ṽ1 is more sensitive than ṽrms

to the (questionable) approximation of P (ṽy) at intermediate
velocities, between ṽa and ṽcr. This may be the reason why the
present approach based on Eq. (A1) appears to fail for ṽ1 even
though it works very well for ṽrms. For γ̇ = 10−19 in Fig. 3(d)
this could mean that the true behavior is a smoother and more
gradual curve than the (somewhat unrealistic) behavior with
three distinct regions with P (ṽy) = const, P (ṽy) ∼ ṽ−2

y , and
P (ṽy) ∼ ṽ−3.06

y .
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