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We study the jamming transition in a model of elastic particles under shear at zero temperature. The key
quantity is the relaxation time τ which is obtained by stopping the shearing and letting energy and pressure
decay to zero. At many different densities and initial shear rates we do several such relaxations to determine the
average τ . We establish that τ diverges with the same exponent as the viscosity and determine another exponent
from the relation between τ and the coordination number. Though most of the simulations are done for the
model with dissipation due to the motion of particles relative to an affinely shearing substrate, we also examine
a model, where the dissipation is instead due to velocity differences of disks in contact, and confirm that the
above-mentioned exponent is the same for these two models. We also consider finite size effects on both τ and
the coordination number.
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I. INTRODUCTION

Granular materials, supercooled liquids, and foams are
examples of systems that may undergo a transition from a
liquidlike to an amorphous solid state as some control param-
eter is varied. It has been hypothesized that the transitions in
these strikingly different systems are controlled by the same
mechanism [1] and the term jamming has been coined for
this transition. Much work on jamming has focused on a
particularly simple model, consisting of frictionless spherical
particles with repulsive contact interactions at zero tempera-
ture [2]. The packing fraction (density) φ of particles is then the
key control parameter. Many investigations have focused on
jamming upon compression, and jamming by relaxation from
initially random states [2–4]. Another physically realizable and
important case is jamming upon shear deformation. This has
been modeled with elastic particles both with a finite constant
shear strain rate γ̇ [5–11] and by quasistatic shearing [4,12,13],
in which the system is allowed to relax to its local energy
minimum after each finite small strain increment. A nice
method to do shearing simulations of hard disks has also
recently been developed [14].

Several open questions remain in spite of many studies
of the jamming models under steady shear. Central among
them is an understanding of the mechanisms behind jamming,
a question that has been addressed, for the case of hard
disks, in several papers by Wyart and co-workers [14–16]. A
related question is what details of the models are important
for the universality class. It has earlier been claimed [11]
that a more realistic model for the dissipation—where the
dissipation is due to the velocity differences between disks in
contact, the CD0 model (CD for “contact dissipation”)—gives
a different critical behavior than the simpler RD0 model (RD
for “reservoir dissipation”) in which the dissipation is against
an affinely shearing substrate. Evidence against this claim
has recently been given in [17], but much work remains to
clarify other aspects of the various models that are relevant for
different physical systems close to jamming.

In this work we perform large scale simulations to deter-
mine the relaxation time—a quantity whose divergence, we
will argue, lies behind the jamming transition. We do that
by first shearing at a steady shear rate and then stopping the

shearing and letting energy and pressure decay to zero; the
relaxation time is the time constant of this exponential decay.
We also determine a related time—the dissipation time—
which is the time scale of the initial decay just after stopping the
shearing. We characterize the dependencies of these relaxation
times on both distance from (below) jamming and the initial
shear rate. We then motivate a direct relation between the
relaxation time and the lowest vibrational frequency of Lerner
et al. [14]. Following Lerner et al. [14] we determine the
contact number z in the absence of rattlers. We then find that
the relaxation time depends algebraically on the distance to the
isostatic contact number, and determine the exponent for this
divergence. Most of our simulations are for the simpler RD0

model (see below) but we also do the same kind of analysis
for the CD model, and confirm [17] that these two models
appear to behave the same. We then turn to two effects that
are related to the finite system sizes: We first show that the
ordinary arithmetic averaging can sometimes give unexpected
effects, and then examine how the number of particles in the
simulations affects the spread in contact number and relaxation
time.

The organization of this paper is as follows: In Sec. II we
describe our numerical methods and give a brief summary
of some earlier results that are used throughout the paper. In
Sec. III we first introduce our two key quantities and discuss
their differences and similarities. We then discuss the relation
to the vibrational frequencies in a model of hard disks [14].
Also following Ref. [14], we demonstrate a direct relation to
the contact number and show that the determined exponent is
the same for CD0 as for RD0. We also consider the finite size
effects. In Sec. IV we finally discuss our results, relate them
to earlier works, and make some comments. Section V gives a
short summary.

II. MODEL AND SIMULATIONS

A. Simulations

Following O’Hern et al. [2] we use a simple model of
bidisperse frictionless soft disks in two dimensions with equal
numbers of disks with two different radii in the ratio 1.4.
Length is measured in units of the diameter of the small
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particles, ds . With rij the distance between the centers of two
particles and dij the sum of their radii, the interaction between
overlapping particles is V (rij ) = (ε/2)δ2

ij with the relative
overlap δij = 1 − rij /dij . We use Lees-Edwards boundary
conditions [18] to introduce a time-dependent shear strain
γ = t γ̇ . With periodic boundary conditions on the coordinates
xi and yi in an L × L system, the position of particle i in a box
with strain γ is defined as ri = (xi + γyi,yi). The simulations
are performed at zero temperature.

We consider two different models for energy dissipation.
The CD model (CD for “contact dissipation”) is the model
introduced by Durian for bubble dynamics in foams [19], and
was also used by Tighe et al. [11]. Here dissipation occurs due
to velocity differences of disks in contact,

fdis
CD,i = −kd

∑

j

(vi − vj ), vi = ṙi . (1)

In the second model, RD—“reservoir dissipation”—the dissi-
pation is with respect to the average shear flow of a background
reservoir,

fdis
RD,i = −kd [vi − vR(ri)], vR(ri) ≡ γ̇ yi x̂. (2)

RD was also introduced by Durian [19] as a “mean-field” [20]
approximation to CD, and is the model used in many early
works on criticality in shear driven jamming [5,14,20,21]. In
both cases the equation of motion is

mi v̇i = fel
i + fdis

i . (3)

We are here interested in the overdamped limit, mi → 0 [19].
In the RD model it is straightforward to perform simulations
with m = 0. In the CD model we take m = 1 which, for the
shear rates we are using, turns out to be small enough to be in
the overdamped limit. We take ε = 1 and kd = 1. The unit of
time is τ0 = dskd/ε.

We focus most of our effort, using longer simulation runs
at lower shear rates, for the model RD0, but we also give
results for the model CD for comparison. We use N = 65 536
particles, and shear rates down to γ̇ = 10−9 and integrate the
equations of motion with the Heuns method with time step
�t = 0.2τ0.

B. Background

The present paper focuses on the behavior of the above-
mentioned models just below φJ . We here summarize a few
results that are important in the following.

The jamming transition is a zero-temperature transition
from a liquid to a disordered solid upon the increase of density.
An excellent way to probe this transition is to look at the
resistance to shearing. Since the defining property of a liquid
is that it is a material that cannot sustain a shearing force, a
finite shear stress σ in the limit γ̇ → 0 is a clear sign of a
solid phase. Within the liquid, i.e., at φ < φJ , the approach to
jamming is seen in the rapid increase of the viscosity, η = σ/γ̇ ;
numerical evidence suggests that it diverges algebraically,

η(φ,γ̇ → 0) = σ/γ̇ ∼ (φJ − φ)−β. (4)

Another quantity that clearly signals the transition is the
pressure and the pressure equivalent of the viscosity, ηp =

p/γ̇ , which similarly diverges with the exponent β,

ηp(φ,γ̇ → 0) = p/γ̇ ∼ (φJ − φ)−β. (5)

Since p ∼ δ whereas the interaction energy is E ∼ δ2, the
energy diverges with the exponent 2β,

lim
γ̇→0

E/γ̇ 2 ∼ (φJ − φ)−2β. (6)

Equations (4) and (5) for σ and p should hold very close to φJ ,
but since the dimensionless friction, μ ≡ σ/p = η/ηp, has a
strong φ dependence, Eqs. (4) and (5) clearly give only the
leading divergence of η and ηp, and are not exact expressions
that hold over any finite density interval. To handle this one
needs to include corrections to scaling [22,23] by writing

O/γ̇ ∼ (φJ − φ)−β[1 + cO(φJ − φ)ων], (7)

for the observables σ and p.
In simulations of soft particles the data will depend on

the shear rate γ̇ , which may be considered a relevant scaling
variable. This suggests a scaling assumption as in critical
phenomena [5]. With δφ = φ − φJ ,

O(δφ,γ̇ ) = b−y/νgO(δφb1/ν,γ̇ bz), (8)

where b is typically considered to be a length rescaling
factor, though it can be chosen arbitrarily. With b = |δφ|−ν ,
specializing to δφ < 0, the scaling relation for O/γ̇ becomes

O(δφ,γ̇ )/γ̇ = |δφ|−(zν−y)gO(γ̇ /|δφ|zν). (9)

In the γ̇ → 0 limit gO(x → 0) = const, together with Eq. (7),
leads to the identification β = zν − y.

Corrections to scaling are included by generalizing Eq. (8)
to

O = b−y/ν[gO(δφb1/ν,γ̇ bz) + b−ωhO(δφb1/ν,γ̇ bz)], (10)

An analysis based on this kind of approach [22] gave β =
2.77(20) whereas a related approach in terms of an effective
density [24] gave the very similar β = 2.58(10). Other recent
values in the literature from simulations are β = 2.2 [21], and
a recent theoretical work gives β = 2.77 [16].

III. RESULTS

A. Measured quantities

1. Relaxation time

One of the hallmarks of the jamming transition is a
diverging time scale. It has been common to measure this
time scale implicitly by measurement of a diverging transport
coefficient like η or ηp. In this section, however, we measure
such a time scale by looking directly at the relaxation of
the system from an initial shear driven steady state to the
zero-energy state obtained after the shearing is turned off.
We thus make use of a two-stage process: In the first stage
the system is driven at steady shear with a constant shear
rate γ̇ , in the second stage the shearing is stopped but the
dynamics is continued which makes the system relax down to
a minimum energy. As the simulations discussed here are at
densities somewhat below φJ , the final state is always a state
of zero energy, and after a short transient time, energy and
pressure decay exponentially to zero. The relaxation time for
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FIG. 1. (Color online) Examples of the pressure relaxation at
different φ. The figure shows the pressure relaxation after the shearing
has been switched off. The preceding shearings were performed at
very low shear rates in order to stay close to the linear region;
the densities and the initial shear rates were (φ,γ̇ ) = (0.8340,10−8),
(0.8380,10−8), (0.8400,5 × 10−9), (0.8408,2 × 10−9), (0.8416,

10−9). To determine the relaxation times τ , we fit pressure to an
exponential decay, only using data with p < 10−7.

a single relaxation is denoted by τ1,

p(t) ∼ exp(−t/τ1).

A few such relaxations at different densities are shown in
Fig. 1. In each case the relaxation time is determined from the
data with p(t) < 10−7, where the decay is exponential to an
excellent approximation. As we will see below the relaxation
time depends on the shear rate applied before the relaxation
and we will let τ (φ,γ̇ )—which thus depends on both φ and
γ̇ —denote the average relaxation time from about 10–100
such relaxations.

Figure 2(a), which is τ (φ,γ̇ ) versus φ for several different
shear rates, clearly suggests that τ diverges at the jamming
transition. The figure also illustrates the shear rate dependence;
τ gets bigger for larger γ̇ which means that the system driven
at higher shear rates needs longer time for reaching the zero-
energy state. The reason for this behavior is maybe not entirely
obvious, but one can at least say that the opposite behavior—
that the decay is faster for a higher initial shear rate—would be
very counterintuitive. Recall that this is the shear rate before the
relaxation step; the relaxation itself is performed with γ̇ = 0.

Note also that this relaxation time is a different quantity
from the quantity with the same name in the context of su-
percooled liquids. In supercooled liquids the particles’ motion
is due to the nonzero temperature, whereas the motion in the
present context is due to the relaxation of the potential energy.

2. Dissipation time

As a complement to the relaxation time, which is de-
termined from the final decay of the pressure, we also
introduce the “dissipation time” τdiss, which is defined from
the initial decay rate, just after the shearing has been turned
off. For this quantity there is however no need to study
the actual relaxations; at any moment the relaxation rate
for the energy may be determined from the energy together
with the dissipating power, giving τ ′ = E/Pdiss. In steady
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FIG. 2. (Color online) Relaxation time and dissipation time vs
density. Panel (a) shows τ vs φ at several different shear rates. The
data increase rapidly with increasing φ suggestive of a divergence at
φJ . There is also a clear shear rate dependence, τ decreases when γ̇ is
decreased towards the hard disk limit, γ̇ → 0. Panel (b) which shows
τdiss vs φ also increases rapidly with φJ . The shear rate dependence
is however the opposite; τdiss increases with decreasing γ̇ . Panel (c)
shows a comparison of τ and τdiss which only includes the data with
the lowest γ̇ (i.e., closest to the hard disk limit). τ and τdiss behave
essentially the same across this density interval; they are very close at
the highest density close to φJ , but the (relative) difference increases
with decreasing φ.

shear we may equate the dissipated power with the input
power Pin = V σ γ̇ , which gives τ ′ = E/(σ γ̇ ) for the average
dissipation time. As we want a quantity that may be directly
compared to τ—i.e., the decay time for pressure rather than the
decay time for energy—we note that p ∼ δ whereas E ∼ δ2

which means that p(t) ∼ e−t/τ implies E(t) ∼ e−t/(τ/2), and
that the two relaxation times differ by a factor of 2. Our final
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expression for the dissipation time is therefore

τdiss = 2
E

σγ̇
. (11)

Figure 2(b) shows τdiss against φ for several different shear
rates. Just as for τ this quantity also appears to diverge as φ →
φJ . The γ̇ dependence is however different; τdiss decreases
with increasing γ̇ , which means that the relative decrease of
the energy is bigger in simulations at higher shear rates. The
different behaviors of τ and τdiss is presumably because τdiss

picks up contributions from all kinds of decay modes, and the
faster modes are more excited when the system is driven with
a higher shear rate. In contrast, τ only gets contributions from
the slowest decay mode.

Figure 2(c) shows a comparison of τ and τdiss. To eliminate
effects due to the finite shear rate we only include the data
at the smallest shear rate and exclude the data at φ = 0.8420,
γ̇ = 10−9 which is clearly away from the γ̇ → 0 limit.

3. Divergence

We are now ready to demonstrate one of the key results of
the present paper, which is that both τ and τdiss diverge with
the exponent β. From the definition of the dissipation time in
Eq. (11) together with Eqs. (6) and (4), it follows directly that
τdiss diverges with the exponent β:

τdiss = E/γ̇ 2

σ/γ̇
∼ (φJ − φ)−2β

(φJ − φ)−β
∼ (φJ − φ)−β. (12)

That τ diverges in the same way follows from the very similar
behaviors in Fig. 2(c) but in Sec. III B 2 we will also argue for
a direct connection between ηp and τ by other means.

Figure 3 shows the determination of β from τ and τdiss. The
determinations are based on the data points from in Fig. 2(c)
very close to φJ , φJ − φ < 0.006. With only a few points
with limited precision in a narrow interval of φ, it is difficult
to do a fit with both β and φJ as free parameters. We therefore
instead determine β after fixing the jamming density to φJ =
0.8433 [12,22,24]. The actual fits of τ and τdiss are shown in
Fig. 3 and give similar values for the exponent: β = 2.71 and
β = 2.78 in good agreement with earlier estimates [16,22,24].

B. Relations to hard disk simulations

In this section we will relate the relaxation time τ to
results from the study of the vibrational modes of sheared
hard disks [14]. Relations between these two approaches are
expected since soft disk simulations at sufficiently low shear
rates give vanishingly small overlaps and therefore should
behave just as hard disks.

1. Relaxation time and the vibrational frequency

To motivate the relation between the relaxation time and
the vibrational frequency we consider small displacements ui
from a zero-energy state. Written in terms of the vector u,
with 2N elements, and the stiffness matrix M, such that the
force (also a vector with 2N components) becomes εMu, the
equation of motion for inertial dynamics may be written

m
d2u
dt2

= εMu. (13)

10.0100.0
103

104

105

106 slope: β = 2.71

Using φJ = 0.8433

(a)

φJ − φ

τ
10.0100.0

103

104

105

106 slope: β = 2.78

Using φJ = 0.8433

(b)

φJ − φ

τ d
is

s

FIG. 3. (Color online) Divergence of τ and τdiss. We here fix φJ =
0.8433 and determine β by fitting the few points of τ and τdiss,
respectively, with φJ − φ < 0.006 and sufficiently small γ̇ to be
close to the hard disk limit. (The points for φ = 0.8420 and γ̇ = 10−9

appear to be too far from the hard disk limit and are not included in
the fits.)

(We here consider a finite mass although our work is concerned
with the overdamped limit of m → 0, only to be able
to relate to other approaches.) With eigenvalues λ(k) and
eigenvectors u(k), the force due to a general displacement
field, u = ∑

k cku(k) becomes ε
∑

k λ(k)cku(k) and the ansatz
u(t) = ∑

k cku(k) sin ωkt gives ω2
k = −(ε/m)λ(k). However,

below φJ where the number of contacts is below the isostatic
value there are modes with zero energy and ωk = 0, which
complicates the analysis. From the formalism for shearing of
hard disks Lerner et al. [14] derived a matrix with the same
eigenvalues as M except for these zero-energy modes. For
that matrix the lowest frequency, ωmin, is always finite.

The relaxation may similarly be analyzed in terms of small
displacements and for overdamped dynamics the equation of
motion becomes

kd

du
dt

= εMu. (14)

The ansatz of an exponential decay, u(t) =∑
k u(k) exp(−t/τk), then gives τ−1

k = −(ε/kd )λ(k). Taken
together, Eqs. (13) and (14) give the desired relation between
the relaxation time and the vibrational frequencies,

τk = kd

m
ω−2

k . (15)
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Our largest τk—the same as our relaxation time τ—then
corresponds to the lowest frequency, ωmin.

τ ∼ ω−2
min. (16)

Our observation that there is only a single relaxation time that
controls the decay corresponds well with the finding [14] that
the lowest frequency in the vibrational analysis is an isolated
mode. If that were not the case, one would expect several decay
modes with similar relaxation times and that would be seen
through a curvature in the data in Fig. 1.

2. Relation to pressure

The formalism of Ref. [14] gives the relation

ω−2
min ∼ ηp,

to be valid in the hard disk limit. Together with Eq. (16) this
leads us to expect that τ and ηp should behave the same in the
hard disk limit and Fig. 4 shows comparisons of τ and ηp from
our soft disk simulations with different shear rates. The data
clearly approach one another as γ̇ → 0.

Figure 4(a) shows τ together with Apηp (where the constant
is Ap = 36) against φ for different γ̇ . Both quantities do indeed
appear to approach the same curve in the γ̇ → 0 limit, given by
the dashed line, fτ (φ) ∼ (φJ − φ)−2.6. Panel (b) which shows
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FIG. 4. (Color online) Comparison of τ and ηp which, up to a
constant prefactor, are expected to behave the same as γ̇ → 0. Panel
(a) shows the raw data, τ , and Apηp , with the constant Ap = 36. The
data for large shear rates (solid triangles) are clearly different, but the
respective points approach one another as γ̇ → 0. The dashed line
is fτ (φ) ∼ (φJ − φ)−β with β = 2.60. Panel (b) show the same data,
but now divided by fτ (φ). The figure clearly suggests that the data
should agree in the γ̇ → 0 limit.

the same data, but now relative to fτ (φ), serves as a strong
confirmation of the expected equality and gives ample support
for the expected direct proportionality between τ and ηp in the
hard disk limit. Recall that ηp and τ are very different quantities
as the first is determined at constant shearing whereas the
second is from the relaxation rate of the pressure.

C. Contact number

1. Relaxation time and contact number

A key result from the study of static packings is that
jamming in frictionless systems occurs when the coordination
number is z = ziso ≡ 2D, which is the number needed for
mechanical stability [25]. This is however exact only in the
absence of rattlers—particles that are not locked up at a fixed
position as they have less than three contacts. To eliminate
rattlers we follow Ref. [14] and repeatedly remove all particles
with less than three contacts. After removing the rattlers, z1 is
obtained as the average number of contacts of the remaining
particles.

Following Lerner et al. [14] we show the individual
determinations, τ1 against δz1 ≡ ziso − z1, in Fig. 5(a). The
figure gives strong evidence for an algebraic relation. For the
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FIG. 5. (Color online) Corresponding values of τ1 and δz1. Panel
(a) shows 2719 corresponding values of τ1 and δz1. Each point is
from a relaxation that gives both a relaxation time τ1 and a final
configuration from which the contact number z1 is determined. The
relaxation time clearly depends algebraically on δz1—the distance to
isostaticity. A fit of all data with δz1 < 0.08 (1625 points) gives the
exponent β/uz = 2.69. Panel (b) is a zoom-in with a more restricted
set of data: φ = 0.8412 and four different shear rates. This shows that
the points for different initial shear rates fall on a single curve.

062209-5



PETER OLSSON PHYSICAL REVIEW E 91, 062209 (2015)

vanishing of δz1 we introduce uz,

δz ∼ (φJ − φ)uz . (17)

Together with τ ∼ (φJ − φ)−β this gives a relation between
the individual data points τ1 and z1,

τ1 ∼ (δz1)−β/uz , (18)

and a fit of our data gives the exponent β/uz = 2.69. Since
there is a curvature in the data that sets in around δz1 = 0.1,
only data with δz1 < 0.08 were used in the fit. This result
appears to be especially robust since it is obtained from a
very simple fit of the raw data with no adjustable parameter.
(Compare Fig. 3 where a determination of β depends on the
correct value of φJ .) Note also that there is no need to restrict
the data to small shear rates of the initial simulation stage. As
shown in Fig. 5(b) data for different γ̇ do indeed fall on (or
spread around) the same line. The explanation for this seems to
be that both τ1 and z1 are determined from configurations with
almost vanishing overlaps, essentially in the hard disk limit, in-
dependent of the initial shear rate. Together with β = 2.70 [22]
this suggests uz = 1 whereas the somewhat smaller β =
2.58 [24] which would imply uz ≈ 0.96, means that we cannot
exclude the possibility that uz takes on a nonintegral value.

Our result β/uz = 2.69 is in good agreement with Ref. [14]
who found β/uz = 1/0.38 = 2.63. A more recent paper by
the same authors [16], however, suggests β/uz = 1/0.3 ≈ 3.3
[their Fig. 5(c)]. This new and lower exponent (0.3 < 0.38) is
due to a curvature in their data, bending over from a larger slope
for δz > 0.1 to this lower slope for δz < 0.1. This bending over
at δz1 ≈ 0.1 is similar to our Fig. 5(a), though the slopes are
different. We cannot offer any explanation for this difference.
[The effect in Fig. 8(a) below, which also leads to a larger
value of β/uz, does not seem to be applicable in that case.]

As mentioned above, the contact numbers were determined
from the relaxed configurations with almost vanishing particle
overlaps. To check if it would be possible to do a similar
analysis of the configurations before the relaxations, we
have also determined the corresponding starting values, zstart

1 ,
and to see how the relaxation process changes the contact
number Fig. 6 shows the final contact number, z1 against the
corresponding starting values, zstart

1 . These data are obtained for
φ = 0.8412, closely below φJ , and four different shear rates.
From the figure we may draw a few different conclusions:
(1) The contact number always decreases in the relaxation
process. (2) This change is bigger for larger initial shear rates.
(3) The final z1 decreases slowly with decreasing initial shear
rate. (4) The contact number of the starting configurations is
sometimes above isostaticity, zstart

1 > ziso whereas z1 is always
below. This last point makes clear that the analyses above,
where the approach to jamming is seen by z1 → ziso, cannot
be used with zstart

1 ; it is only z1 obtained from the relaxed
configurations that approaches ziso as jamming is approached.

2. Analysis of the CD0 model

We have also applied the methods discussed above to the
CD0 model. These results are from a rather limited number
of relaxations and no data very close to jamming, but they
nevertheless give convincing results. Figure 7 shows τ1 vs δz1

just as in Fig. 5. The solid line, from fitting the data with

δz1 < 0.08, gives the exponent β/uz = 2.63. We note that
this is very close to β/uz = 2.69 of the RD0 model which
gives support to the recent claim [17] that these two models
have the same critical behavior. To facilitate a direct compar-
ison, the fitting line in Fig. 5 is included as a dashed line in
Fig. 7. The only difference appears to be that the the relaxation
time for the CD0 model is about a factor 1.5 larger than for the
RD0 model, for the same value of δz1.

3. Effect of large fluctuations

Figure 5 above displayed the individual data points (τ1,δz1),
with different symbols for different simulation parameters φ,
γ̇ . An obvious way to show the same thing in a less crowded
figure would be to determine the arithmetic means of τ1 and z1

for the different sets (φ,γ̇ ). We introduce the notation τa and
(δz)a for these arithmetic means. (τa is thus just the ordinary
average, τ .) This kind of data are shown in Fig. 8(a), and it then
turns out that the averaged data do not behave quite the same
as the individual points; the few points at the smallest (δz)a
are now clearly off the solid line. The reason for this is that
the τ1 for a certain combination of φ, γ̇ are spread over a finite
range of δz and since there is a power law relation between τ

and δz, if one does the arithmetic average of this fixed φ data,
one gets a point that does not lie on the same curve.

However, it turns out that things work differently—all the
data fall on the line—when one instead plots the geometric
means,

τg(φ,γ̇ ) = exp
(〈

ln τ
(φ,γ̇ )
1

〉)
, (19)

(δz)g(φ,γ̇ ) = exp
(〈

ln δz
(φ,γ̇ )
1

〉)
. (20)

These data are shown in Fig. 8(b).
To illustrate what happens when one averages data with a

power law relation, Fig. 9 shows the behavior of arithmetic
and geometric means for some points on the line y = x−3, on
logarithmic and linear scales, respectively. The points labeled
“arithmetic” and “geometric” are the respective averages of

3.96 3.98 4.00 4.02 4.04

3.96

3.98

4.00

2 × 10−9
1 × 10−8
2 × 10−8
1 × 10−7

φ = 0.8412

zstart
1

z 1

FIG. 6. (Color online) Change in contact number in the relax-
ation process. The figure shows contact numbers before and after
the relaxation. The solid line is z1 = zstart

1 . The configurations are at
density φ = 0.8412; the starting configurations are generated with
four different initial shear rates. Both the initial zstart

1 and z1, obtained
after the relaxation, are calculated after repeatedly removing all
particles with less than three contacts.
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CD0: β/uz = 2.63

RD0

δz1

τ 1

FIG. 7. (Color online) Determination of β/uz for the CD0 model.
By fitting data for δz1 < 0.08 to Eq. (18) we determine β/uz = 2.63.
We note that this is very close to β/uz = 2.69 of the RD0 model.

the open circles in the figures. In the left panel, which shows
the data on logarithmic scales, the arithmetic average is again,
just as in Fig. 8(a), clearly off the line. Though this could seem

1.010.0
103

104

105

106

107

slope = −2.97 (a)

(δz)a

τ a

1.010.0
103

104

105

106

107

β/uz = 2.68 (b)

(δz)g

τ g

FIG. 8. (Color online) Mean values of τ1 and δz1 determined in
two different ways. Panel (a) shows the ordinary arithmetic mean
values. For small δz these points deviate clearly from the expected
algebraic behavior. This phenomenon is due to the large spread of
the data which appears close to jamming as is also described in
conjunction with Fig. 9. Panel (b) which shows the geometric means,
τg , and (δz)g of the points (τ1,δz1) in Fig. 5(a) for the same φ and γ̇ .
These points obey an algebraic behavior with the exponent β/uz =
2.68 in very good agreement with the analysis of the individual data
points in Fig. 5(a).

2 5

0.01

0.1

arithmetic
geometric

(a)

x

y

2 3 4 5

0.05

0.10 arithmetic
geometric

(b)

x

y

FIG. 9. (Color online) Illustration of the arithmetic mean and the
geometric means for some points on the curve y = x−3. From the
figure with linear scale in panel (b) it is clear that one cannot expect
the arithmetic mean to lie on top of the curve. As discussed in the
text this effect only becomes important in cases where the relative
variance is sizable.

surprising, a plot with linear scales as in panel (b) directly
shows that the arithmetic average cannot lie on that line.

This effect is directly related to the big spread in the data
around the average together with a power different from 1.
With points yi = ya(1 + δi) where ya is the arithmetic mean
and δi is the relative deviation from this mean, the variance is
σ 2

y = 〈y2〉 − 〈y〉2 = y2
a〈δ2

i 〉. To second order in the deviations,
the geometric mean becomes

yg = exp(〈ln[ya(1 + δi)]〉)
≈ ya exp(〈δi − δ2

i /2〉) ≈ ya(1 − 〈δ2
i /2〉),

and the ratio of the two different averages becomes

yg

ya

= 1 − σ 2
y

2y2
a

, (21)

which means that the effects discussed here are important only
when the fluctuations in the data are truly large.

4. Finite size dependence

We now examine the spread of z1 and τ1, as in Fig. 5(b),
around the solid line, with special focus on how this spread
depends on the finite system size. For the finite size study we
turn to a lower packing fraction, φ = 0.838. The reason for this
is that, closer to φJ (e.g., at φ = 0.840) some configurations for
smaller sizes fail to reach zero energy in the relaxation step and
get jammed with z > ziso, and such events badly complicate
the analysis.

Figure 10 which is τ1 vs z1 for φ = 0.838, the initial shear
rate γ̇ = 10−7, and the three sizes, N = 1024, N = 4096, and
65536, clearly shows that these data spread more for smaller
N . Note that the data in Fig. 10 for all different sizes have
a common behavior, τ1 ≈ fτ (z1) ≡ Aτ (δz1)−b. The exponent
b = 2.40 is an effective exponent which differs from β/uz =
2.69 (obtained in Fig. 5) since we here make use of data with
larger δz1.

We introduce three different measures to characterize the
spread of these data. Two straightforward measures are s(z1)
and s(τ1) which are the standard deviations of the data. Another
measure is the spread of τ1 away from the line, i.e., the
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FIG. 10. (Color online) Finite size and the spread of the points
(τ1,δz1) for φ = 0.838 and initial shear rate γ̇ = 10−7. Panel (a)
which is (τ1,δz1) for three different system sizes shows that the points
spread considerably more for smaller N . Panel (b) shows different
quantitative measures of the spread of these data. The open circles
are s(z1)—the standard deviation of z1. Open squares are s(τ1)/τa .
(The normalization by τa is to get quantities of the same order of
magnitude). Solid dots are the standard deviation of τ1/fτ (z1) which
is the relative deviation of τ1 from the solid line in panel (a). Note
that both the spread of z1 and the spread around the solid line vanish
as 1/

√
N , as if the data were averages of N independent samples.

value predicted from the known z1, s[τ1/fτ (z1)]. These three
quantities are shown in Fig. 10(b) for number of particles
ranging from N = 1024 through 65 536. To interpret these
data we first recall that the standard deviation of averages of
N independent samples is ∼N−1/2. We find that both s(z1)
and s(τ1)/τa vanish with the exponents −0.54 and −0.51 in
excellent agreement with this expectation. For s[τ1/fτ (z1)]
we find a somewhat more complicated behavior with a larger
exponent, −0.64, and a questionable fit to the data. Taken
together our data suggest an interpretation where both the
spread of z1 and the spread of τ1 around fτ (z1) are controlled
by independent simple stochastic processes.

IV. DISCUSSION

The relaxation dynamics around the jamming transition has
been studied before, but with a rather different approach [9]:
the configurations were first generated randomly, then relaxed
to a zero-energy state with the conjugate gradient method,
and after that perturbed by a pure affine shear deformation.
The relaxation time was then determined from the relaxation
of such initial states by fitting the shear stress to σ (φ,t) ∼

t−αe−t/τ with α = 0.55(5), and the relaxation time was found
to diverge as τ ∼ (φJ − φ)−ζ with ζ = 3.3(1). This exponent
is clearly bigger than our β ≈ 2.7. One possible explanation
for this difference is that we in the present study get data in
the limit of vanishing shear rate in the preparation step (i.e.,
γ̇ → 0 in the steady state shearing), whereas they in their work
apply the pure shear deformation suddenly, which is more like
a rapid shearing. Indeed, as shown in Fig. 3(a) any given fixed
shear rate would give too large values for τ as one gets close
to φJ , and from analyses of such data one would expect to get
too high values of the exponent for the divergence.

We finally want to stress two consequences of the presented
results: We first stress that the above results taken together
suggest that τ is a fundamental quantity that controls the
overlap δ/γ̇ and thereby is behind the divergence of other
quantities like ηp and η. For a detailed argument we consider
the γ̇ → 0 limit where τdiss ≈ τ and the N → ∞ limit where
the spread of z1 and τ1 vanish. A given φ then leads to a
well-defined δz which in turn implies a well-defined τ and
τdiss ≈ τ . With the additional assumption of a given value for
the dimensionless friction, μ ≡ σ/p, power balance between
the input power Pin = σ γ̇ ∼ μδγ̇ and the dissipated power
Pdiss = E/τdiss ∼ δ2/τdiss gives δ/γ̇ ∼ τdissμ. This therefore
provides a very direct link between the relaxation times and
ηp ∼ δ/γ̇ .

Second, we note that the relaxation time τ we have defined
here has a different scaling exponent than does the time scale
associated with rescaling the shear strain rate γ̇ . From Eq. (5)
for the γ̇ → 0 limit and dimensional arguments one would
expect the deviations due to a finite γ̇ to scale as

ηp(φ,γ̇ )/|δφ|−β ∼ g(γ̇ τ ) ∼ g(γ̇ /|δφ|β), (naive), (22)

where the scaling function limx→0 g(x) = const (for the hard
disk limit) and the deviations being controlled by γ̇ τ . This
is however not the case. As shown in Eq. (9) the data scale
with g(γ̇ /|δφ|zν) where zν = β + y, y ≈ 1.1, which thus is
clearly different from the behavior expected from dimensional
analysis. We hope to be able to return to this question
elsewhere.

V. SUMMARY

To summarize, we have done extensive two-step simula-
tions, first shearing the system at different constant shear rates
and then stopping the shearing and letting the system relax. At
late times of this relaxation, both energy and pressure decay
exponentially, and we define the relaxation time τ to be the
time constant of the exponential decay of the pressure. We
similarly define the “dissipation time” from the initial decay
immediately after the shearing is turned off.

We then show that these two times behave very similarly
when considering the limit of low shear rates, but also that
their respective shear rate dependencies are opposite. From
the expression for τdiss, Eq. (11), it follows immediately that
τdiss diverges with the exponent β—the same divergence as for
ηp = p/γ̇ —and this is also corroborated by the φ dependence
of τ and τdiss in the small-γ̇ limit.

We also show that the relaxation time is directly related to
the lowest vibrational frequency of hard disk systems [14], and,
furthermore, that this suggests a relation between τ and ηp,
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which should be valid in the small γ̇ limit. Figure 4 provides
ample evidence that this actually is the case.

We then turn to a thorough study of the relation between the
contact number and the relaxation time. The contact number is
a key quantity in the field of jamming and we follow Ref. [14]
and determine the contact number after removing rattlers.
With τ1 and z1 from individual measurements, τ1 depends
algebraically on the distance from isostaticity δz1 = ziso − z1,
τ1 ∼ (δz1)β/uz , with β/uz ≈ 2.69.

The same analysis applied to the CD0 model gives es-
sentially the same exponent, β/uz ≈ 2.63, which provides
additional evidence [17] that the CD0 and the RD0 models
are in the same universality class. We consider these analysis
to be especially robust as they are entirely straightforward and
do not require data obtained at very low shear rates.

We then turn to effects of the spread of the individual τ1 for
a fixed set of parameters φ, γ̇ , around its average. We first point
out that the ordinary arithmetic mean may be problematic and
that a geometric mean actually in some respects works better.
We then consider the finite size effect where we find that
the spread of both the relaxation time and the coordination
number go as 1/

√
N , just as expected for the statistics of N

independent variables.
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[17] D. Vågberg, P. Olsson, and S. Teitel, Phys. Rev. Lett. 113,
148002 (2014).

[18] D. J. Evans and G. P. Morriss, Statistical Mechanics of
Nonequilibrium Liquids (Academic, London, 1990).

[19] D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995).
[20] S. Tewari, D. Schiemann, D. J. Durian, C. M. Knobler, S. A.

Langer, and A. J. Liu, Phys. Rev. E 60, 4385 (1999).
[21] B. Andreotti, J.-L. Barrat, and C. Heussinger, Phys. Rev. Lett.

109, 105901 (2012).
[22] P. Olsson and S. Teitel, Phys. Rev. E 83, 030302(R) (2011).
[23] T. Kawasaki, D. Coslovich, A. Ikeda, and L. Berthier, Phys. Rev.

E 91, 012203 (2015).
[24] P. Olsson and S. Teitel, Phys. Rev. Lett. 109, 108001 (2012).
[25] S. Alexander, Phys. Rep. 296, 65 (1998).

062209-9

http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1103/PhysRevLett.104.165701
http://dx.doi.org/10.1103/PhysRevLett.104.165701
http://dx.doi.org/10.1103/PhysRevLett.104.165701
http://dx.doi.org/10.1103/PhysRevLett.104.165701
http://dx.doi.org/10.1103/PhysRevE.83.030303
http://dx.doi.org/10.1103/PhysRevE.83.030303
http://dx.doi.org/10.1103/PhysRevE.83.030303
http://dx.doi.org/10.1103/PhysRevE.83.030303
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1143/JPSJ.77.123002
http://dx.doi.org/10.1143/JPSJ.77.123002
http://dx.doi.org/10.1143/JPSJ.77.123002
http://dx.doi.org/10.1143/JPSJ.77.123002
http://dx.doi.org/10.1088/1742-6596/319/1/012011
http://dx.doi.org/10.1088/1742-6596/319/1/012011
http://dx.doi.org/10.1088/1742-6596/319/1/012011
http://dx.doi.org/10.1088/1742-6596/319/1/012011
http://dx.doi.org/10.1103/PhysRevE.80.011308
http://dx.doi.org/10.1103/PhysRevE.80.011308
http://dx.doi.org/10.1103/PhysRevE.80.011308
http://dx.doi.org/10.1103/PhysRevE.80.011308
http://dx.doi.org/10.1103/PhysRevE.79.050301
http://dx.doi.org/10.1103/PhysRevE.79.050301
http://dx.doi.org/10.1103/PhysRevE.79.050301
http://dx.doi.org/10.1103/PhysRevE.79.050301
http://dx.doi.org/10.1143/PTPS.184.143
http://dx.doi.org/10.1143/PTPS.184.143
http://dx.doi.org/10.1143/PTPS.184.143
http://dx.doi.org/10.1143/PTPS.184.143
http://dx.doi.org/10.1103/PhysRevLett.105.088303
http://dx.doi.org/10.1103/PhysRevLett.105.088303
http://dx.doi.org/10.1103/PhysRevLett.105.088303
http://dx.doi.org/10.1103/PhysRevLett.105.088303
http://dx.doi.org/10.1103/PhysRevLett.102.218303
http://dx.doi.org/10.1103/PhysRevLett.102.218303
http://dx.doi.org/10.1103/PhysRevLett.102.218303
http://dx.doi.org/10.1103/PhysRevLett.102.218303
http://dx.doi.org/10.1039/b927228c
http://dx.doi.org/10.1039/b927228c
http://dx.doi.org/10.1039/b927228c
http://dx.doi.org/10.1039/b927228c
http://dx.doi.org/10.1073/pnas.1120215109
http://dx.doi.org/10.1073/pnas.1120215109
http://dx.doi.org/10.1073/pnas.1120215109
http://dx.doi.org/10.1073/pnas.1120215109
http://dx.doi.org/10.1103/PhysRevE.89.022305
http://dx.doi.org/10.1103/PhysRevE.89.022305
http://dx.doi.org/10.1103/PhysRevE.89.022305
http://dx.doi.org/10.1103/PhysRevE.89.022305
http://dx.doi.org/10.1103/PhysRevE.91.062206
http://dx.doi.org/10.1103/PhysRevE.91.062206
http://dx.doi.org/10.1103/PhysRevE.91.062206
http://dx.doi.org/10.1103/PhysRevE.91.062206
http://dx.doi.org/10.1103/PhysRevLett.113.148002
http://dx.doi.org/10.1103/PhysRevLett.113.148002
http://dx.doi.org/10.1103/PhysRevLett.113.148002
http://dx.doi.org/10.1103/PhysRevLett.113.148002
http://dx.doi.org/10.1103/PhysRevLett.75.4780
http://dx.doi.org/10.1103/PhysRevLett.75.4780
http://dx.doi.org/10.1103/PhysRevLett.75.4780
http://dx.doi.org/10.1103/PhysRevLett.75.4780
http://dx.doi.org/10.1103/PhysRevE.60.4385
http://dx.doi.org/10.1103/PhysRevE.60.4385
http://dx.doi.org/10.1103/PhysRevE.60.4385
http://dx.doi.org/10.1103/PhysRevE.60.4385
http://dx.doi.org/10.1103/PhysRevLett.109.105901
http://dx.doi.org/10.1103/PhysRevLett.109.105901
http://dx.doi.org/10.1103/PhysRevLett.109.105901
http://dx.doi.org/10.1103/PhysRevLett.109.105901
http://dx.doi.org/10.1103/PhysRevE.83.030302
http://dx.doi.org/10.1103/PhysRevE.83.030302
http://dx.doi.org/10.1103/PhysRevE.83.030302
http://dx.doi.org/10.1103/PhysRevE.83.030302
http://dx.doi.org/10.1103/PhysRevE.91.012203
http://dx.doi.org/10.1103/PhysRevE.91.012203
http://dx.doi.org/10.1103/PhysRevE.91.012203
http://dx.doi.org/10.1103/PhysRevE.91.012203
http://dx.doi.org/10.1103/PhysRevLett.109.108001
http://dx.doi.org/10.1103/PhysRevLett.109.108001
http://dx.doi.org/10.1103/PhysRevLett.109.108001
http://dx.doi.org/10.1103/PhysRevLett.109.108001
http://dx.doi.org/10.1016/S0370-1573(97)00069-0
http://dx.doi.org/10.1016/S0370-1573(97)00069-0
http://dx.doi.org/10.1016/S0370-1573(97)00069-0
http://dx.doi.org/10.1016/S0370-1573(97)00069-0



