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In a recent paper [Mandal et al., Phys. Rev. E 88, 022129 (2013)], the nature of spatial correlations of plasticity
in hard-sphere glasses was addressed both via computer simulations and in experiments. It was found that the
experimentally obtained correlations obey a power law, whereas the correlations from simulations are better
fitted by an exponential decay. We here provide direct evidence—via simulations of a hard-sphere glass in two
dimensions (2D)—that this discrepancy is a consequence of the finite system size in the 3D simulations. By
extending the study to a 2D soft disk model at zero temperature [Durian, Phys. Rev. Lett. 75, 4780 (1995)],
the robustness of the power-law decay in sheared amorphous solids is underlined. Deviations from a power law
occur when either reducing the packing fraction towards the supercooled regime in the case of hard spheres or
changing the dissipation mechanism from contact dissipation to a mean-field-type drag in the case of soft disks.
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I. INTRODUCTION

It is well established that dynamic correlations grow in
glass forming liquids as the glass transition is approached
[1–7]. This growth is, however, generally found to be limited
to a few particle diameters [2,4,5,7]. A dramatic change may
occur if the glass is driven by an applied shear that forces
structural rearrangements [8]; such external driving can lead
to an avalanchelike plastic response, mediated by a long range
elastic field [9].

Some of us recently addressed this issue for a hard-sphere
glass both via computer simulations and experiments with
a focus on the direction dependence of correlations and the
crossover from the thermal regime of supercooled liquids to the
athermal limit of strongly driven glasses [10,11]. Qualitative
agreement was found between simulations and experiments
regarding both the behavior of single particle fluctuations
(found to be isotropic) and the anisotropy of their spatial
correlations. The specific functional form of these correlations
was, however, found to be different. While experimental
data were best described by a power-law decay—recalling a
self-similar behavior—simulations suggested an exponential
decay with a characteristic length of the order of a few particle
diameters.

Here we provide strong evidence that a reason for this
discrepancy is the finite system size of simulations. When
performing event-driven finite-temperature simulations in two
dimensions (2D) (which allows for much larger linear sizes,
L), we find that the exponential decay found for smaller sizes
changes to an algebraic decay at larger L.

We also perform simulations of a Durian-type 2D
soft disk model at zero temperature [12] with two dif-
ferent types of hydrodynamic drag: (i) contact dissipa-
tion (CD), where the dissipative force is proportional
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to the relative velocity of interacting particle pairs, and
(ii) mean-field or reservoir dissipation (RD), where a drag force
relative to an externally imposed background linear velocity
field is used (see Sec. II for details). These simulation studies
are accompanied by experiments on granular particles. Results
obtained for the CD case are in line with experiments, thus
showing that power-law correlations are the generic response
of driven amorphous solids.

In the case of reservoir dissipation, on the other hand, there
are strong deviations from a power-law decay even for the
largest L simulated. We attribute this behavior to the simplified
dissipation mechanism which couples the particle dynamics
to an externally imposed flow, without any influence of the
particle motion on the flow velocity [13–15].

II. SIMULATION MODEL AND EXPERIMENTAL SYSTEM

Our first simulation model is a polydisperse hard-sphere
system of mass m = 1 and average diameter σ = 0.8. Lengths
are measured in units of σ and time in units of σ

√
m/kBT ,

where T is temperature and kB , the Boltzmann constant, are
both set to unity for convenience. Event-driven molecular
dynamics simulations are performed using the DYNAMO

code [16]. Periodic boundary conditions are used along all
directions. When combined with the Lees-Edwards boundary
condition [17], this leads to a shear deformation of γ = t γ̇ .
The simulated shear rates reported here are γ̇ = 5 × 10−5

and 10−4. The packing fractions studied are around the glass
transition point, which, for the present polydisperse system,
is located at a packing fraction of φg ≈ 0.58 (3D) [18]
and φg ≈ 0.80 (2D) [19,20]. The quiescent properties of the
3D system have been studied extensively in Ref. [21]. The
temperature is fixed at T = 1 via velocity rescaling. We present
all the measurements after 100% shearing to ensure that the
system has reached a steady state.

We also perform simulations with soft bidisperse particles
with size ratio 1.4 in two dimensions and at zero temperature.
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The diameter of the smaller particles is σ = 1. With σi for the
diameter of particle i, the mass is mi = πσ 2

i /2. We make use of
Lees-Edwards boundary conditions with shear rates γ̇ = 10−6

through 10−4. At the densities considered here, there is no
strong dependence on shear rate, and the data in this Rapid
Communication are only for a single shear rate, γ̇ = 10−5. The
number of particles in the simulations is mostly N = 262 144,
though smaller systems are also simulated to examine finite
size effects. In the model, there is both a conservative elastic
force and a dissipative force. The elastic force depends on
the position coordinates only. With rij = ri − rj for the
distance between particles i and j , σij = (σi + σj )/2, and the
overlap δij = (σij − rij )/σij , the elastic force is f el = keδij r̂ij

with r̂ij = rij /|rij |. We note that at shear rate γ̇ = 10−5,
the particles deform only marginally, δij ≈ 1.1 × 10−4 at
φ = 0.82. This means that we expect this soft disk model
to behave essentially as a hard disk model; the softness of the
particles should not play any significant role. We report on
results obtained both with contact dissipation (CD) for which
the dissipative force is given by the velocity difference to all
particles in contact, f diss

CD = −kd

∑
j (vi − vj ), as well as with

reservoir dissipation (RD), f diss
RD = −kd [vi − vR(ri)], where

vR(ri) = γ̇ yi x̂ (with x̂ the unit vector along the x direction).
The latter model has sometimes been called the mean-field
model, as the particles dissipate against the average velocity
γ̇ yi x̂. In the simulations, we take kd = 1 and ke = 1.

For the experimental measurements, we use suspensions
of both Brownian and granular particles. The Brownian sys-
tem consists of sterically stabilized polymethylmethacrylate
(PMMA) particles with diameter of σ = 1.3 μm, suspended
in a mixture of cycloheptyl bromide and cis-decalin. This
solvent mixture matches both the density and refractive index
of the particles. The particles have a polydispersity of 7% to
prevent crystallization. The particle volume fraction is fixed at
φ ∼ 0.6, well inside the glassy state [22]. We apply shear at
a constant rate in the range of 1.5 × 10−5 to 2.2 × 10−4 s−1,
corresponding to modified Peclet numbers γ̇ τ between 0.3 and
2.2, respectively [8]. Here, the structural relaxation time is τ =
2 × 104 s, as determined from the mean-square displacement
of the particles. The granular system consists of PMMA
particles with a diameter of 3.9 mm, and a polydispersity
of ∼5% suspended in a mixture of dimethyl-sulfoxide, water,
and salt (NaI), carefully tuned to match both the refractive
index and the density of the particles [23]. Individual particles
are imaged in three dimensions using a laser sheet, while
the suspension is sheared at a rate of ∼5 × 10−5 s−1 with a
constant confining pressure of ∼7 kPa [23].

III. SPATIAL CORRELATIONS OF PLASTICITY

We define a quantitative measure of plastic activity as
follows [24]. For a reference particle (noted here with index 0),
we follow the evolution of the distance vectors di = ri − r0 for
a short time interval δt , where i runs over the nearest neighbors
of the reference particle. We then define a measure for plastic
activity as D2 = (1/n)

∑n
i=1[di(t + δt) − di(t) − ε · di(t)]2,

where ε is the linear (affine) transformation tensor which best
describes the time evolution of di . D2 is the mean-square
deviation from a local affine deformation, and is known as an
excellent measure of local plasticity [24].

The above applies directly to both the experiments and the
event-driven (finite-temperature) simulations. The analyses in
the zero-temperature simulations (the RD and CD models)
work the same except that di(t + δt) − di(t) is replaced by
vi(t)δt , where vi(t) is the instantaneous velocity of the particle
i relative to the reference particle. Note that, here, δt affects
the magnitude of the optimum affine transformation tensor
(and thus D2) by a constant factor only and has no effect
on the spatial correlations of D2 addressed in this Rapid
Communication.

We then use the above introduced scalar quantity D2 to
define the correlation function [8],

CD2 (�r) = 〈D2(r + �r)D2(r)〉 − 〈D2(r)〉2

〈D2(r)2〉 − 〈D2(r)〉2
. (1)

The function CD2 (�r) provides a measure of correlations
between plastic activity at two points in space separated by
a vector �r.

IV. RESULTS ON SPATIAL CORRELATIONS

A. Motivation—experiments and event-driven
simulations in 3D

We compare correlations of plastic activity in experiments
and the 3D simulations in Fig. 1. Figures 1(a) and 1(b), which
are the experimental correlations, show robust power-law
correlations with exponent α ∼ 1.3 for a range of Peclet
numbers. These power-law correlations extend out to the
distance r ∼ 50σ , which equals the vertical system size.
(In the horizontal directions, the experimental system is
macroscopically large.) In contrast, Figs. 1(c) and 1(d), which
are the correlations from the event-driven 3D simulations, give
strong evidence of an exponential decay. This discrepancy was
noted by some of us in an earlier publication [11].
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FIG. 1. (Color online) Correlation of plastic activity in (a),(b)
experiments and (c),(d) simulations of hard-sphere glasses. The
same data are shown both in double logarithmic (left panel)
and semilogarithmic (right panel) scales. The experimental data
show robust power-law decay, while the simulations rather show
exponential decay.
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FIG. 2. (Color online) Angle averaged correlation of plastic ac-
tivity in 2D simulations of hard disks for various system sizes in
(a) double logarithmic and (b) semilogarithmic scale. The packing
fraction is φ = 0.82 > φg ≈ 0.80 (glassy phase). The straight lines
are fits to (a) A(�r)−α and (b) B exp (−�r/ξ ) with values of α and
ξ as indicated.

B. Event-driven simulations in 2D

One possible reason for the discrepancy noted above could
be the limited system size, L/σ = 25, in the event-driven
3D simulations, which is due to limitations in computational
resources. To achieve larger linear system sizes with similar
computational effort, we turn to two dimensions. In this
way, we are able to reach sizes of up to L/σ = 200. We
thus performed a systematic study of the finite size effects
of CD2 at a density of φ = 0.82 above φg ≈ 0.80 (Fig. 2).
For L/σ < 50, we find that correlations decay exponentially,
in perfect agreement with the 3D simulations in Figs. 1(c)
and 1(d). For larger sizes, the figure shows clear evidence
of a power-law decay. This observation suggests that it is the
rather limited system size in the 3D simulations that is the main
cause for the observed exponential decay, and that a power-law
decay is the true behavior for sufficiently large system sizes.
These results therefore point to a good agreement between
experiments and simulations.

In contrast to the glassy phase, CD2 decays in the su-
percooled state exponentially, regardless of the system size
(Fig. 3). This observation is interesting and suggests that the
glassy state is distinct from the supercooled state: spatial
correlations of plastic activity are mediated by the elastic
field [9,25,26]. In the supercooled state, the elasticity is
not well established (though observable for sufficiently fast
processes [27]), and correlations are short ranged; in the
glassy phase, on the other hand, the glass has developed a
system-spanning elastic field. A local plastic rearrangement
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FIG. 3. (Color online) Same quantity as in Fig. 2, but for a lower
packing fraction of φ = 0.77 < φg ≈ 0.80 (supercooled state).
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FIG. 4. (Color online) Correlation of plastic activity along the
flow direction from simulations of a Durian-type model with contact
dissipation (CD) and reservoir dissipation (RD) for different densities
across the jamming transition (φJ ≈ 0.843). The dashed lines and
quoted exponents are obtained by fitting CD2 for the CD model to an
algebraic decay for 2 � �x/σ � 20.

may then influence a region far away by distorting this elastic
field. This has been discussed in mean-field models [25,28].

C. 2D simulations of soft particles at zero temperature

In order to examine the role of drag forces for algebraically
decaying correlations, we have performed 2D simulations of
a Durian-type model of athermal soft disks for both CD and
RD, as described in Sec. II. The two models are compared
in Fig. 4, where CD2 along the flow direction is shown at
different densities across the jamming transition. The algebraic
behavior for the CD model is very robust and changes only
weakly with density. The exponent α varies slightly with
φ and remains close to −1.3. This value coincides with
both the one obtained in the 2D hard-sphere simulations
and the experiments. Interestingly, the RD model exhibits a
different behavior: while the decay is essentially algebraic at
the lowest density, φ = 0.80, it is rather exponential at higher
densities, φ � 0.84. These results indicate that the dissipation
mechanism plays a significant role in the correlations, as
also indicated by recent works [13–15]. The results thus
indicate certain pitfalls in simulation models that one has to be
aware of: as the RD model is a simplified model to describe
dissipation, we conclude that the CD model better describes
the real experimental situation, and that power-law correlations
are the generic response of athermal driven suspensions.
This is indeed confirmed in experiments by direct imaging
of correlations in a sheared granular suspension: As shown
in Fig. 5, power-law correlations are observed in the shear
direction, in agreement with the CD model, provided the
system size is sufficiently large. In the experiment, correlations
can only be imaged for distances r � 10d due to the small
size of the experimental system that can be imaged in 3D.
Nevertheless, despite the limited system size, the power law
becomes apparent, and the agreement between the experiments
and the CD model becomes clear.
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FIG. 5. (Color online) (a) Correlation of plastic activity along the
flow direction from simulations of a Durian-type model with contact
dissipation for different system sizes. (b) Experimental result for a
granular suspension.

We note that the elastic response in amorphous solids has
been studied by a number of authors [29–31]. In particular,
DiDonna and Lubensky [31] proposed an analytic model
for correlations in systems with random distribution of
elastic modulii. For system sizes that are large compared
to the correlation length of the elastic modulus, nonaffinity
correlations were predicted to scale as |x|−1 in 3D, with a
logarithmic decay in 2D. Interestingly, in 3D, we observe a
power-law decay of correlations with an exponent of −1.3.
Nevertheless, as can be inferred from the presented data, our
2D simulations suggest a power-law decay with approximately
the same exponent as in 3D, rather than a logarithmic behavior.
We note, however, that the correlation of plastic activity
considered in this Rapid Communication is a different quantity
than the correlations of nonaffine velocities—〈v(r) · v(r +
�r)〉, studied in Ref. [31]; the latter is closely related—albeit
not identical—to the correlations of plastic activity. For the
simulations presented in Figs. 4 and 5, we indeed find that
correlations of nonaffine velocities decay logarithmically in
2D (data not shown). The reason for this different scaling of
seemingly closely related quantities is currently not clear to us.

V. CONCLUSION

In this work, we address the nature of spatial correlations
of plasticity in sheared amorphous solids in experiments and
simulations using different simulation models. This study is
motivated by a recent publication by some of the present
authors [11] reporting a power-law decay in experiments on a
colloidal hard-sphere glass but an exponential decay in event-
driven molecular dynamics simulations of a model hard-sphere
glass (Fig. 1). By going to 2D, we find strong evidence that the
exponential behavior reported in Ref. [11] is a finite size effect
(Fig. 2). This conclusion is underlined by an algebraic decay of
correlations in Durian-type soft disks [12] at zero temperature
(Fig. 5). Furthermore, by comparing two simulation models,
i.e., reservoir dissipation and contact dissipation, we find
that mean-field-type drag forces that couple the dynamics
of particles to an externally imposed flow field without
any feedback mechanism may strongly bias the nature of
correlations (Fig. 4). Thus, while this work demonstrates the
robust and genuine algebraic nature of correlations in flowing
amorphous solids, it also sheds some light onto the origin of
possible deviations from power-law decays.
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