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Asymmetric velocity correlations in shearing media
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A model of soft frictionless disks in two dimensions at zero temperature is simulated with a shearing
dynamics to study various kinds of asymmetries in sheared systems. We examine both single particle proper-
ties, the spatial velocity correlation function, and a correlation function designed to separate clockwise and
counterclockwise rotational fields from one another. Among the rich and interesting behaviors we find that the
velocity correlation along the two different diagonals corresponding to compression and dilation, respectively,
are almost identical and, furthermore, that a feature in one of the correlation functions is directly related to

irreversible plastic events.
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I. INTRODUCTION

In collections of particles with repulsive contact interac-
tion there is a transition from a liquid to an amorphous solid
state as the volume fraction increases—the jamming transi-
tion. It has been suggested that this transition is a critical
phenomenon with universal critical exponents [1] and the
successful scaling of rheology data from simulations is
strong evidence that that actually is the case [2-4]. The pre-
cise values of the critical exponents, however, continue to be
a matter of discussion [5].

At the very heart of critical phenomena is the notion of a
correlation length that diverges as the critical point is ap-
proached. It is therefore important to identify the proper cor-
relation length. Several works have tried to look for a grow-
ing order in the static quantities, but without much success.
Another possibility is to look for a growing length in the
dynamics. Velocity correlations in sheared systems were
studied in Ref. [6] though not revealing any growing length.
A large correlation length was however found in Ref. [7] and
they also argued for a pronounced angular dependence of the
velocity correlations [8].

In a previous work we reported the finding of a growing
characteristic length from the transverse component of the
velocity correlation function [2]. The extraction of the corre-
lation length exponent, however, seems to be more compli-
cated than presented there and we therefore set out to do a
more thorough analysis of the velocity correlations. As an
important step in that direction we here consider some sym-
metry properties of velocity correlations in a sheared system
and find a surprisingly rich and interesting behavior.

When shearing simulations are done slowly enough it be-
comes possible to separate the time evolution into elastic
parts where the energy slowly increases and plastic contribu-
tions which are irreversible processes where the system rap-
idly evolves and dissipates energy [9]. We will argue below
that the contribution from the plastic processes also may be
seen in a certain velocity correlation function.

The content of the present paper is the following: in Sec.
II we briefly describe the model and the simulations. Section
IIT describes some rather direct measures of velocity corre-
lations and how they depend on the direction of the separa-
tion between the particles whereas Sec. IV deals with a more
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involved correlation function designed to capture the differ-
ence between clockwise and counterclockwise rotations of
the velocity field. A summary and some concluding remarks
are given in Sec. V.

II. MODEL AND SIMULATIONS

Following O’Hern er al. [10] we simulate frictionless soft
disks in two dimensions using a bidispersive mixture with
equal numbers of disks with two different radii of ratio 1.4.
Length is measured in units of the small particles (d;=1).
With r;; for the distance between the centers of two particles
and d; 7 the sum of their radii, the interaction between over-
lapping particles is

E(1 rild)?, ri<d
V(rij) -<2 s t > (1)

0, rljZdlj

We use Lees-Edwards boundary conditions [11] to introduce
a time-dependent shear strain y=t¢y. With periodic boundary
conditions on the coordinates x; and y; in an LX L system,
the position of particle i in a box with strain vy is defined as
r;=(x;+ yy;,y;) which thus gives a shear flow in the x direc-
tion. We simulate overdamped dynamics at zero temperature
with the equation of motion [12],

o3 D,
dt ;o dr;
which is integrated with the second order Heuns’ method.

This above expression is for the total velocity, including
the shearing part. In the analyzes of the velocity correlations
below we will use the nonaffine part of the velocity exclud-
ing the trivial shearing part y;yx. This nonaffine part of the
velocity will be denoted by v. Our simulations are performed
with N=65536 particles and shear rates down to
¥=1078/7, where 7,=d,/Ce is the unit of time.

Our dynamic model here is just the Durian bubble model
[12] where the dissipation is caused by the velocity differ-
ence of particles in contact. Following Durian, we use a
mean-field-like (MF) approximation: for the equation of mo-
tion of particle i we replace the particular velocities of the
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FIG. 1. Configuration with 4096 particles color coded according
to the elastic energy of each particle. The dark particles (high elastic
energy) make up force chains that preferably extend along the
X—7y direction.

particles in contact with particle i with the steady state aver-
age velocity of the system at the position of particle i. This
has commonly been believed to be a good approximation,
especially at low shearing rates. This MF model is, in a
sense, the simplest of all dynamical models, and is therefore
in our opinion worthy of study in its own right. We note,
however, that recent work has claimed that the velocity cor-
relations, that are the subject of this paper, may be quite
sensitive to this MF approximation [5]. We question that
conclusion but leave this to further investigation and proceed
here with the analysis of our MF dynamics.

III. VELOCITY CORRELATIONS
A. Symmetry of a shearing system

Figure 1 shows the presence of force chains in our shear-
ing system. The figure is a configuration with 4096 particles,
color coded according to the elastic energy of each particle.
As is well known, the force chains [8] tend to be along the
X—7y direction, which is the direction of compression. This
means that the force chains break the reflection symmetry
along x and that the system is only symmetric under the
combined transformation x— —x and y——y. The same con-
clusion is readily drawn from the expression for the shear
stress,

1
o= _QEf;C]'yij,
L™

where L is the linear system size, the sum is over pairs of
particles, ffj is the x component of the force between par-
ticles i and j, and y;; is the y component of their separation.
Note that the shear stress changes sign under the transforma-
tion x——x but remains unchanged under the combined
transformation x ——x and y ——y.

B. Single particle properties

As we will see below several symmetries that hold in
systems at equilibrium are broken in a shearing system. The
simplest symmetry is however respected; there is no net ve-
locity in the system, (v)=0. As remarked above, v is the
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FIG. 2. Measure of the anisotropy in both particle velocities and
contact forces from simulations with 4=107". Panel (a) shows the
normalized (v,v,) for individual particles versus density. The cor-
relation changes from negative at low densities to positive around
¢= ¢; (dashed vertical line), signifying a change from a predomi-
nance of motion along the force chains to a slight overweight for
motion perpendicular to the force chains. Panel (b) shows that the
corresponding contact force correlation is always negative, which is
consistence with the existence of force chains at all densities. This
contact force correlation also has a marked feature at ¢p= ¢,.

nonaffine part of the velocity. Here and in the following (...)
represents the average over all particles and a large number
of configurations generated with our shearing dynamics. For
the average velocity things are unusually simple since this
result holds for each individual configuration as a conse-
quence of the overdamped dynamics and total force balance,
v=2v;=C2f,;=0 as f;;=—f;;.

The conclusion of a vanishing average velocity may also
be reached from the symmetry considerations. Since the
combined transformation also implies the change of sign of
both velocity components, v,— —v, and v,— -v,, it follows
that (v ,)=(-v,,), for u=x,y, which gives (v,)=0.

In contrast to equilibrium results from symmetry that
(v,v,)=0, one finds that this quantity does not vanish in the
sheared system. Figure 2 shows (v,v,)/(v?) against ¢. At
low densities the correlation is negative which means that the
particles tend to move more along than perpendicular to the
force chains. The correlation changes sign at ¢=0.81,
reaches a peak at ¢=0.84=~ ¢; and then decrease toward
zero. This means that there is a region around ¢; where the
particles move slightly more in the direction perpendicular
to the force chains.

A related quantity is (f;;f};) which is the correlation be-
tween the different components of the contact force f;;. Note
that there is a direct relation between the velocities and the
contact forces: v;=CXf;;, where the sum extends over all

particles j in contact with i. Nevertheless, (f;;f};) behaves
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FIG. 3. (Color online) The anisotropy measured through the (vi)

relative to <V2)=(v§>+(v€>. This fraction is close to 50% in the

regions around jamming but decreases slightly with increasing
density.

rather differently from the velocity correlations. Whereas
(v,w,)/(v?) has a peak at ¢~ ¢, Fig. 2(b) shows that the
normalized (fj‘}fIVJ) changes at the same density from a rapid
increase (which is a decrease in magnitude) to being almost
constant.

Another measure of the asymmetry is the relative magni-
tude of the two velocity components. From energy balance—
that the dissipated power has to be equal to the supplied
power—follows the result for the velocity squared: C(v?)
=(L?/N)oy [6]. This dissipated power needs however not be
equal in the x and y directions. Figure 3 shows that the frac-
tion of the power dissipated by velocities along the y direc-
tion is close to 50%, but also that there is a clear dependence
on density: <v§)/ (v?) decreases from 0.506 to 0.495 when the
density increases from ¢=0.80 to 0.94.

C. Spatial dependence

We now turn to the spatial velocity correlations, i.e., the
correlations between pairs of particles with separation r. We
first focus on the total correlation function,

g(r) =(v(r') - v(r' +r)), (2)

and examine how it depends on both magnitude r=|r| and
direction of r. We will study this correlation function in four
different directions: along the two main directions, X, y, and
along the diagonals

In our shearing geometry 7 is the direction of uniaxial
compression and § the direction of uniaxial dilation.
Figure 4 shows the correlation functions obtained with
$=0.8433~ ¢, and =107 along these four different direc-
tions. The curves are pairwise equal with, on the one hand,
the correlations along the main directions, X and y, and on
the other hand the correlations along the diagonals. These
results should be essentially without finite size effects since
the system size is L=300 whereas r only extends up to 50.
In view of the density dependence in Figs. 2 and 3 we have
confirmed that the general behavior remains the same for a
wide range of densities around ¢;.
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FIG. 4. (Color online) Total velocity correlation along the four
different main directions. The decay of the correlations is mono-
tonic along the main directions, X and y and nonmonotonic along
the diagonals. This is for ¢=0.8433~ ¢, and shear rate y=107°.

The result that g(r) behaves the same along both diago-
nals is different from the earlier finding of an angular depen-
dence of the correlation length in shearing systems [7] with
minimum and maximum along the different diagonals. The
reason for this difference is not clear, but we speculate that it
is related to the very different dynamics in their system,
which is also reflected in the oscillatory behavior of their
velocity correlation function.

To investigate the reason for the dependence of g(r) on
the direction of r, we separate the correlations into longitu-
dinal and transverse components, parallel and perpendicular
to the separation, respectively. In the x direction these com-
ponents are

81(r%) = (0)v,(r£)),

gj_(rxA) = <Uy(0)vy(r-£)>9

with obvious generalizations to the other directions. After
this separation we find that the transverse component along
these four different directions behaves about the same, see
Fig. 5(a). (The rather small differences in the transverse
component for the two diagonal directions will be discussed
further below.) The difference is largely due to the decay of
the longitudinal component, Fig. 5(b), which is monotonic
along the main (£ and ¥) directions but nonmonotonic along
the diagonals.

The result above is a different behavior along the diago-
nals compared to the main directions. We now instead focus
on the difference between the two diagonal directions, § and
7. From Fig. 4 we found that the total velocity correlations
along these two directions are very similar. Nevertheless, as
shown in Fig. 5 both g, and g, are clearly different. This
suggests that this difference originates from the mixed cor-
relations g,,(r)=(v,(0)v,(r)). To see this we use the defini-
tions g(r$)=(v,(0)v,(rs)), and g, (r5)=(v,(0)v,(rs)) together
with v,=(v,+v,)/y2 and v,=(v,~v,)/\2 for the velocities
along the diagonals. This gives
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FIG. 5. (Color online) Transverse and longitudinal velocity cor-
relations, respectively, along the four different directions. The trans-
verse correlation in panel (a) is very similar for all four directions
whereas the longitudinal correlation function shown in panel (b) is
different for the diagonal directions, compared to the two main
directions. The differences in the total velocity correlations in Fig. 4
are thus related to differences in the longitudinal correlations.

gH(rf) :g(rf) +gyx(r§)’

g.1(r8) = g(rs) — g,(r9),
where we have also made use of the symmetry g,,=g,.
which follows from considering the transformation r — -r,
followed by a translation: v,(0)v,(r)—[-v,(0)][-v,(-1)]
=0,(r)v,(0)=v,(0)v,(r).
Figure 6 shows the mixed correlations along the two di-
agonal directions. The thick arrows in the inset illustrate the
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FIG. 6. (Color online) The mixed correlation functions g,.(5)
and —gyx(rf). The difference between the mixed correlation func-
tions (apart from the trivially different sign) is yet an example of the
asymmetry in the sheared system. The arrows in the inset illustrate
the rotational velocity fields which have the effect that a velocity
v,(0)>0 at the origin on the average gives v,(r§)>0 and
v, (rf) <0.
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velocity fields one might expect as an effect of a particle
with v, >0 which is v, >0 for separations in the § direction
and v, <0 in the 7 direction. Since we expect v, <0 along 7,
the correlations in that direction are shown with the opposite
sign. Note that both functions start out at g, (0)=(v,v,). The
correlations then grow above this r=0 value and actually
become stronger in the f direction (though with opposite
sign) than along §. For a comparison, the dashed lines are the
correlations of v, along the same directions. This difference
between g,,(r§) and —g,,(rf) is yet another example of a
broken symmetry in the shearing system.

IV. ROTATIONAL ASYMMETRY

The previous section gave evidence for the importance of
whirls in the velocity field. The inset of Fig. 6 shows two
such whirls that are a consequence of v,(0)>0, and there
will also be whirls with the opposite orientation that will
contribute to the correlation functions in much the same way.
The question we now like to address is whether they contrib-
ute equally much or not. Is the system symmetric when con-
sidering whirls with clockwise and counterclockwise rota-
tions, respectively?

Since the shearing by itself introduces a rotational field, it
could at first seem obvious that this symmetry is broken, but
that is not correct. Our velocity correlations are calculated
from the nonaffine velocities and the net rotation is zero in
the nonaffine velocity field. The system could therefore in
principle well be symmetric with respect to these different
directions of rotation.

A. Asymmetric correlations

There are at least two different ways to motivate the new
correlation function that we are about to introduce. The first
is to note that the direction of the rotational fields in the inset
of Fig. 6 depend on the sign of v,(0). With the opposite sign
of v,(0), v,(rf), and v,(r§) would also (typically) change sign
and the rotations would be in the opposite directions.

A second point of departure is to consider the fact that the
correlation function defined in Eq. (2) is symmetric under the
transformation x — —x whereas the system itself is only sym-
metric under the interchange of both x and y. This suggests
that some information is lost when calculating the standard
correlation function and, furthermore, that a guiding prin-
ciple in the definition of an ideal correlation function is that
it should have the same symmetry as the system.

It is then possible to combine both these lines of thought
and construct a function by restricting the average in Eq. (2)
to only include terms with v,(r") > 0. For the transverse cor-
relation function with r along the X direction, this becomes

8100 = (o, (r" +x8), (1)>0- 3)

This expression may further be generalized to including par-
ticles with both signs of v (r) by letting the direction of the
separation (+xX or —xX) depend on the sign of the velocity,
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FIG. 7. (Color online) Development of the asymmetry in G (x).
The function is nearly symmetric at ¢=0.82 but develops a very
pronounced asymmetry as the density is increased above ¢;. The
solid lines are the symmetric G |. The shear rate is y=107".

1 2 vy(roy(r' +xx), v,(r')>0,

Nterm r’ Uy(r,)vy(r’ _x-)e), vy(r’) <0.

(4)

The normalization N, is the number of terms in the sum.
Written this way it becomes clear that g* (x) indeed has the
desired symmetry properties. The rational for this new asym-
metric function is also discussed in conjunction with Fig. 11.
Note also that the symmetric function is related to g (x)
through

£.(0= {51 W + g1 (-]

The quantities shown in the figures below (both symmetric
and asymmetric) are, G(x)=g(x)/g(0), normalized such that
G(0)=1.

Figure 7 shows G (x) at four different densities both
above and below ¢, again from simulations with y=107".
For comparison, the symmetrized function G | (x) is given by
the solid line. At ¢=0.82, panel (a), G (x) is almost sym-
metric. The other panels show that the asymmetry grows
with increasing ¢, and at ¢=0.90 well above ¢;, panel (d),
the asymmetry is very pronounced. The x<<0 part shows a
sharp dip at x=—18 whereas the x>0 part has a rather shal-
low minimum at x=79.

Another way to illustrate the growth of the asymmetry is
through the position of the minima. Figure 8 shows €, and
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FIG. 8. (Color online) Location of the respective minima of the
correlation functions. €, and €_ are the positions of the minima of
G* at x>0 and x<0, respectively, whereas ¢ sym 18 from the mini-
mum of G . The asymmetry of G* which is reflected in the differ-
ence ¢, —<€_ develops around ¢;.

€_, the absolute value of the position of the minima for
x>0 and x<0, respectively, together with €, from the
minimum of the symmetrized function. The asymmetry
grows rapidly above ¢=0.84 and the behavior of €, and €_
turn out to be very different at higher densities; €, continues
to increase whereas €_ reaches a maximum at ¢=~0.86 and
then decreases slowly.

Figure 9 is the same quantity obtained at
$=0.8433~= ¢, [13] with different shear rates. It is here
found that the asymmetry grows with decreasing shear rate.
The algebraic increase of ¢, which suggest a divergence in
the limit of vanishing shear rate, is clear from Fig. 10
whereas both €_ and €y, grow less rapidly.
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FIG. 9. (Color online) The correlation function G (x) at
$=0.8433~ ¢, and several different shear rates down to y=107%.
The asymmetry increases slowly with decreasing shear rate.
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FIG. 10. (Color online) Position of the minima of g* (x) and g |,
respectively, at ¢=0.8433= ¢, and four different shear rates. Note
the algebraic increase of €,~ 97925 which would imply a diver-
gence at vanishing 7.

B. Origin of the rotational asymmetry

We now turn to the question of the origin of the asymme-
try in g% (x) and will argue that it is linked to the plastic
processes. The reason for this is the manifest asymmetry of
the velocity profile of an elementary plastic event, as shown
in the inset of Fig. 11 [9]. Note that the orientation of this
velocity profile with its quadrupolar structure is dictated by
the direction of the shear. The velocity field corresponds to a
compression along the *(x—y) direction together with an
expansion in the orthogonal =*(x+y) directions, which is
equivalent to a simple shear. This implies that the mirror
version of such an event is expected to be much less com-
mon, if at all present, and it is this effect that causes the
asymmetry. Note that this agrees well with the enhanced an-
ticorrelation at x<<0. When a particle has v,>0 due to a
plastic event one would expect that there should be one or
more other particles with v, <0, and the inset of Fig. 11
shows that they should be found in the —x direction.

To further check this idea we have tried to separate the
contribution to the correlation function from the plastic
events from the rest, i.e., we have calculated gj separately

Gy(x)
o
o
o

. G,llow 4
o Gfi\st
o Glr — Gll(m'JrGtiM 4

1
-100 -50 0 50 100

FIG. 11. (Color online) Splitting of the correlation function into
two different contributions at ¢=0.8433 and y=10"". The total
Gj(x) (open circles) is split into contributions from slow and fast
particles, respectively. It is clear that the asymmetry is largely an
effect of the fast particles which we relate to the plastic processes.
The inset shows an idealized velocity profile for a typical plastic
event with quadrupolar structure. Note that this velocity field is a
consequence of our shearing geometry which is equivalent to a
compression along the = (x—y) directions together with an dilation
in the orthogonal = (x+y) directions.
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for increasing and decreasing total energy [6], respectively.
That study, which was done for N=4096 particles, did indeed
give evidence (not shown) that the part related to a decrease
in total energy was the more asymmetric one. However,
since the total energy is a global quantity that kind of analy-
sis is not a very sensitive one, at least not at finite shear rates.
In a large system one would expect some regions to be char-
acterized by plastic events and a local decrease in energy
whereas the motion in other regions is elastic, but we still
have to classify the whole system as either plastic or elastic.

Instead of splitting up the contributions based on the
change in the total energy we now consider the change in the
local energy. That is done by classifying each term in
Eq. (4) as “fast” or “slow,” corresponding to plastic and elas-
tic, respectively. Since the change in total energy is
AE=Ly-CZv? [6], the change in the local energy is re-
lated to the average v? in a certain region. On the average,
one expects the energy to decrease locally if v>>(v?). As a
reasonable and more sensitive way to split g% (x) into two
different contributions, g¥ =g* ¥+ ¢"™" (we drop the “+” in
the “slow” and “fast” terms to simplify the notation) we
therefore classify each of the terms in Eq. (4) according to
the magnitude of the velocities. If both v(r’) and v(r’+xx)
are slow, (i.e., they both obey v?><(v?)), the term contributes
to g'°% whereas it contributes to g™ otherwise, i.e., if at
least one of the particles is fast.

Figure 11 shows the splitting of the total G (x) (open
circles) into slow and fast parts, respectively. Note that the
contribution from the slow particles (solid dots) is almost
symmetric whereas there is a very pronounced asymmetry
from the fast particles (open squares). This is therefore evi-
dence that the asymmetry is caused by the fast particles and
that this typically is related to a local drop in energy which is
often related to a plastic event.

V. SUMMARY

To summarize, we have examined velocity correlations in
a sheared system with emphasis on the breaking of symme-
tries due to the shearing. We first find that (v,v,)#0 for
individual particles and that this correlation depends strongly
on density. At low densities the particle preferably move
along the force chains whereas they preferably move
perpendicular to the force chains around ¢;. We then exam-
ine how the total velocity correlation g(r) depends on the
direction of r. Rather surprisingly, the correlation along the
two diagonals, corresponding to the direction of compression
and dilation, respectively, are almost identical. The decay
along the diagonals is nonmonotonic, in contrast to the
monotonic decay along the main (£ and y) directions.

We then argue that the usual correlation functions are
more symmetric than the system itself and define a less sym-
metric velocity correlation function that also may be used to
probe the differences between clockwise and counterclock-
wise rotations. This function is asymmetric with respect to x,
and this is an asymmetry that increases rather dramatically
when either the density increases above ¢; or the shear rate
decreases at fixed ¢p= ¢»;. We attribute the asymmetry to el-
ementary plastic events with quadrupolar symmetry and their
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orientation dictated by the direction of the shear as shown in
the inset of Fig. 11.

This investigation of various velocity correlations has
been done with the ultimate goal to determine the correlation
length and the correlation length exponent. The wildly dif-
ferent behavior of the various correlation functions suggests
that this is a nontrivial task, but things nevertheless do seem
promising. As will be discussed elsewhere, we have found
that a certain mixed correlation function—similar to gxy(r) in
Fig. 6—decays exponentially over surprisingly large ranges
in r. Another promising finding is that the same length (apart

PHYSICAL REVIEW E 82, 031303 (2010)

from a constant factor) shows up in the ultimate decay to
zero of g(rx).
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