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Diffusion and velocity autocorrelation at the jamming transition
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We perform numerical simulations to examine particle diffusion at steady shear in a soft-disk model in two
dimensions and zero temperature around the jamming density. We find that the diffusion constant depends on
shear rate as D~ y below jamming and as D~ 20 with gp<<1 at the transition and set out to relate this to
properties of the velocity autocorrelation function. It is found that this correlation function is governed by two
processes with different time scales. The first time scale, the inverse of the externally applied shear rate,
controls an exponential decay of the correlations whereas the second time scale, equal to the inverse shear
stress, governs an algebraic decay with time. The obtained value of ¢, is related to these properties of the

correlation function.
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As the volume fraction increases in zero-temperature col-
lections of spherical particles with repulsive contact interac-
tion, there is a transition from a liquid to an amorphous solid
state—the jamming transition. It has been suggested that this
transition is a critical phenomenon with universal critical ex-
ponents [1] and the properties of this transition continues to
be a very active field of research. Simulations at steady
shearing have provided strong evidence that the behavior at
the jamming density actually is a critical phenomenon [2,3],
but questions still remain as to what extent results and ideas
from ordinary critical phenomena may be taken over to the
study of jamming, as well as the fundamental reason for the
observed critical behavior.

The critical behavior at jamming has so far mostly been
examined through scaling analyses of time-independent
quantities. A second window into the questions behind jam-
ming is given by also examining the time dependence. One
commonly expects that the time dependence should be deter-
mined by a single time scale. In supercooled liquids this time
scale is readily identified as the time for escape of the par-
ticles from the cages made up of their neighbors and it is this
time scale that determines key properties of supercooled lig-
uids like viscosity and diffusion constant.

At zero temperature there is no thermally activated mo-
tion and one then has to study the system driven out of
equilibrium, e.g., by imposing a shear flow with a certain
shear rate . One then expects that the associated time scale
1/ should have a role similar to the escape time in super-
cooled liquids and the diffusion would then be D~ y. Con-
sequently, the mean-square displacement depends only on
the total shear ry=v. An alternative view is that a higher
shear rate means that the system will not have time to move
to a new local minimum before it disappears due to the
shearing [4] and this kinds of reasoning leads to the expec-
tation that the distance moved per unit strain should decrease
with increasing shear rate, i.e., D~ y/0 with g, <<1. Experi-
ments also give conflicting results. Whereas some recent ex-
periments on colloidal systems give ¢5,=0.80=0.01 [5] oth-
ers report a linear behavior, gp=1 [6].

In this Rapid Communication we perform shearing simu-
lations of a simple soft-disk model in two dimensions at zero
temperature to determine the diffusion constant at several
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densities around ¢;. In the region below jamming we confirm
the expected behavior D~ 7y, but we also find that the behav-
ior at the transition is very different: D~ 40 with ¢p
~(.78(2). We furthermore find that it is possible to do a
scaling collapse of D in a region around the transition. To
better understand this behavior we turn to the velocity corre-
lation function (VCF) and find that it is governed by two
different time scales. Beside 1/ from the externally im-
posed shear rate, the system is also controlled by the time
scale from the inverse shear stress, which we believe is re-
lated to the internal relaxation. This internal relaxation con-
tributes with an algebraic decay to the VCEF. It is found that
these features together lead to an effective time scale 7
~ 79D that controls the macroscopic behavior, as, e.g., seen
through the diffusion.

Following O’Hern et al. [7] we simulate frictionless soft
disks in two dimensions using a bidispersive mixture with
equal numbers of disks with two different radii of ratio 1.4.
Length is measured in units of the diameter of the small
particles (d;=1). With r;; for the distance between the centers
of two particles and d;; the sum of their radii, the interaction
between overlapping particles is

€
E(l_rij/dij)z’ rij<d

ij

V(rij) =

O, r,-jEdij

We use Lees-Edwards boundary conditions [8] to introduce a
time-dependent shear strain y=ty. With periodic boundary
conditions on the coordinates x; and y; in an LX L system,
the position of particle i in a box with strain 7y is defined as
r;=(x;+yy;,y;). We simulate overdamped dynamics at zero
temperature with the equation of motion [9],

dr; dv(r;;
dt ;o dr;

with e=1 and C=1. The unit of time is 7y=d,/Ce. We inte-
grate the equations of motion with the Heuns method, using
a time step Ar=0.27;. As this must be considered rather

large, we have checked carefully that simulations with half
that time step gives the same results to a very high accuracy.
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FIG. 1. (Color online) Shear stress versus shear rate around ¢;.
Well below ¢;, exemplified by ¢=0.82, we find o y. On this
log-log plot that is shown by a straight line with slope=1 (lower
dashed line). At ¢=0.8433= ¢; the relation is algebraic, o~ Y17,
with ¢,=0.33 (upper dashed line). Data at slightly higher and lower
densities (filled and open circles, respectively) show clear curva-
tures. In the y—0 limit they cross over to o=const and o 7y,
respectively.

The possibility to use such large time steps is linked to the
simple dynamics, zero temperature, and our low shear rates.

The behavior of the shear stress at a few different densi-
ties at and around ¢=0.8433= ¢, [10] is shown in Fig. 1.
The simulations are done with N=65 536 particles except
when otherwise noted. At low densities (crosses, ¢=0.82)
the shear stress is simply proportional to y. At ¢= ¢;, the
shear stress is algebraic in the shear rate, o~ /¢ with ¢,
=0.33, whereas the data obtained at ¢ slightly away from ¢,
have clear curvatures. In the notation of Ref. [2], ¢,=A/(B
+A). We remark that the fit at ¢, is not entirely perfect. This
is due to some corrections to scaling that complicate the
scaling analyses and is also the reason for the somewhat
different values of ¢; and the exponents here compared to
Ref. [2].

To determine the diffusion constant, we consider the
transverse displacements, i.e., the displacements in the y di-
rection. We will related this to the VCF from the y compo-
nent of the velocity,

8o(1) = (v, (t")v,(t" +1)),

where the average is over all particles and a large number of
initial times, ¢’. Here and in the following, ¢ is the difference
between two absolute times. The VCF has been examined
before [11] but the present data with higher precision at
lower shear rates make it possible to do a more thorough
analysis of its properties. The relation to the diffusion con-
stant is given by the fundamental relation

D= fx dtgu(t) =gv(0) ) dth(t)’ (1)

where we introduce the normalized G,(t)=g,()/g,(0). It is
convenient to write the expression in terms of G,(¢) since the
prefactor, g,(0), has a known behavior, gU(O)E<v%)~0"j/,
which follows from N(v?)/C=L*cy [11]. ’

Our determination of the diffusion constant is illustrated
in Fig. 2(a). As the figure shows it is difficult to determine D
from the long time limit of (Ay?)/t since this quantity ap-
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FIG. 2. (Color online) Diffusion constant around ¢;. Panel (a)
shows the determination of D from the large 7y part of data from
#=107% and ¢=0.8433. The solid line is from fitting (Ay?) to Eq.
(2). The dashed line corresponds to D. Panel (b) shows the expected
behavior below jamming, D~ 7, together with the same data at
jamming, D~ P, with ¢p=0.78(2). This slope continues to de-
crease with increasing ¢ and is =~0.68 at ¢=0.86. Panel (c) is a
scaling collapse of the diffusion constant with gp=0.78.

proaches the constant value=D very slowly. The reason for
this is a remainder of the short time behavior. For 7> ¢,
where 1, is the range of the velocity correlations [such that
G,(r) may be neglected for t=1); we choose v,=0.5, t,
=1,/ 7, cf. Fig. 3], it is easy to show that the expression for
the mean-square distance is

<Ay2(t)>=f dt'f di"g,(t' —1") =Dt —d, 2)
0 0

with D from Eq. (1) and dy=[{dt’ [ ;9dt”gv(t”). The solid line
in Fig. 2(a) is from a fit to Eq. (2) with data from the interval
¥9=0.5= y=2. The dashed line is the estimated value of D.

Figure 2(b) shows diffusion constant versus shear rate at
three different densities, ¢=0.82, $=0.8433=¢,, and ¢
=0.86. Below ¢, the behavior is linear and at ¢; the relation
is algebraic, D ~ 40, with ¢,=0.78(2). This slope continues
to decrease as ¢ increases above ¢; and is =~0.68 at ¢
=0.86. Using ¢,=0.78 together with 1/(8+A)=0.275 from

040301-2



DIFFUSION AND VELOCITY AUTOCORRELATION AT THE ...

T
0.62e=7/0081 .01

6=1082< ;]
oy =106 4
0.1 0y =107
G
© e X
0.01 +++ Xy 4
TN ++++ N
., ++++ tal
O Py . ++++ ‘.
0'0010 | |__*%eeel T I
.00 0.05 0.10 0.15 020 025 0.30

v =ty

FIG. 3. (Color online) Scaling properties of the VCF below and
at ¢,. The collapse of G,(y) at $=0.82 (upper points) nicely shows
that the behavior is governed by v, which implies that 1/ is the
relevant time scale. The lower points which show G,(y) at ¢;
clearly fail to scale. The solid line shows that G, decays exponen-
tially, e=””1 with ,=0.081 down to a negative value. The meaning
of the symbols for the data at ¢= ¢; is given in Fig. 4(a).

a scaling analysis of the energy to be discussed elsewhere, it
is possible to collapse D in a region around ¢; as shown in
Fig. 2(c).

To search for a reason for this nontrivial behavior we turn
to the VCFE. Figure 3 shows very clearly that the behaviors
below ¢; and at ¢, respectively, are very different. At ¢
=0.82<¢; the VCF collapses when plotted against 7y
whereas the same data at ¢= ¢; fails badly to collapse. The
low-density data decay exponentially ~e™””1 with 1,
~(0.081 to a negative value =~-0.01 as shown by the solid
line. Such nonmonotonic behavior with a dip below zero [11]
is familiar from liquids in equilibrium [12].

The dramatic failure to collapse is at first difficult to rec-
oncile with the value ¢;,=0.78(2) which is not very far from
unity. It is therefore interesting to ask what scaling we should
expect for G,(¢; ) to give gp=1 at ¢;. Considering the pref-
actor of Eq. (1), g,(0)~ yo, it follows that g,=1 only if
JdtG,(t;7)=1/0, which suggests the scaling G,(z;7)
=G(t0). To check this we plot G,(1) at ¢, against to for
several different shear rates in Fig. 4(a). Just as expected
(since gp # 1) there is no perfect collapse of the data, but it is
interesting to note that the data agree reasonably well at
small times. Figure 4(b) is the same kind of plot but only
including data for small total shear, y<<0.01. These data col-
lapse nicely and actually suggests an algebraic scaling func-

tion, é(x) ~x7, for x>0.5, where \ is a new fundamental
exponent.

It turns out that the deviations from a common curve in
Fig. 4(a) may be ascribed to an exponential decay and that
the VCF may be written Gv(t;j/)=é(t0')e"//71. Figure 4(c)
shows G(to) obtained by choosing y,=0.081, (the same as in
the exponential decay of the low-density data in Fig. 3). The
collapse is very good and the scaling function is clearly al-
gebraic. The slope in Fig. 4(c) gives A=0.77(2).

From these findings we conclude that the behavior is con-
trolled by two time scales and their associated processes.
Beside the externally given time scale #; =,/ that controls
an exponential decay of G,(7) there is a time scale from the
inverse shear stress f;,,=1/Co, which governs an algebraic
decay. We believe that this is the time scale that controls the
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FIG. 4. (Color online) Attempted scaling collapse of the VCF at
¢;. Panel (a) shows a failure to collapse, except at very short times.
It is then seen in panel (b) that the data for a small total shear, y
<<0.01, actually collapse nicely and that the behavior at large times
is algebraic. Finally, panel (c) shows that it is possible to make all
data with =107 collapse by compensating for the exponential
decay, e~ " with ¥:1=0.081. The simulation for the lowest shear
rate was here done with twice as many particles (N=131 072) to
avoid finite-size effects that become visible in G, () before they are
seen in most other quantities.

internal relaxation of plastic events [4]. Below jamming
where ooy one has #;,«#; and there is in effect only a
single time scale.

The focus of the present investigation is a comparison of
the transport properties at and below the jamming transition,
respectively. It should nevertheless be mentioned that the
functional form of G, above ¢; appears to be rather similar
with both algebraic and exponential behaviors. The detailed
study of this is however complicated by the finite-size effects
[13] that are expected at higher densities and is left to future
work.

We now want to express ¢p in terms of the exponents ¢,
and \ that characterize the scaling of G,(¢;7%). The simplest
approximation is to neglect the saturation of G, at small ¢
and, in effect, assume that G,(t;7) (t42)™ =" holds
down to #=0. This should be an excellent approximation in
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the limit of small 7. From Eq. (1) and g,(0) ~ 7'*9 we get

. A1 o
D~ 71+q(,7—q(,>\(l) f drx e ~ 0Ny,
Y1 0

and obtain q0D=)\+(1 -N)q,=0.85(3) as the estimate of this
exponent in the y— 0 limit. Note that this result is dominated
by the first term; the value of qOD is mostly controlled by . It
is also interesting to note that this expression gives gp=1 if
q,=1; i.e., ooy implies that D~ 7.

Including the saturation of G, at small 7 in the integration
above adds a term proportional to 7y to the expression for D.
The effect of this term will be perceived as a lower effective
value of ¢p at the shear rates accessible in the simulations.
Note that this is consistent with ¢;,=0.78(2) from Fig. 2(b)
being slightly lower than the numerical value ¢%=0.85(3),
though the differences are not much bigger than the expected
statistical uncertainties.

An interesting finding in the above analysis is the alge-
braic behavior of the correlations at large ¢ and small 7y
shown in Fig. 4. Algebraic decay of velocity correlations
have been found before [14] in molecular-dynamics simula-
tions, but since that effect is attributed to the conservation
(and decay) of momentum, that kind of mechanism cannot
be relevant here in this model with no inertia. We instead
speculate that the algebraic behavior is related to the finding
from quasistatic simulations that individual plastic events of-
ten are avalanches of elementary flips [13,15-17] and that
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these avalanches have the effect to increase the diffusion and
therefore also to increase the VCF. Another reason for mak-
ing this connection is ideas from self-organized criticality—
with the paradigmatic sandpile model—that a slowly driven
system can automatically adjust itself such that there are ava-
lanches on all length and time scales, which would be seen
through power laws in various quantities.

To conclude, we have found that the relation between dif-
fusion and shear rate is very different below ¢; and at ¢,
respectively, and that this difference is related to two time
scales that happen to be proportional to one another below
¢; but become very different at ¢;. These time scales are
ti=7v/7y from the externally applied shear rate and £
=1/(Co)~ 79 that controls the internal relaxation. The

normalized VCF is G,(1;9)=G(t/t;,)e™"1, where G(x)
~x7* for large x and \ is a new fundamental exponent.
These two fundamental time scales and the exponent N\ to-
gether lead to an effective time scale 7~ y 92 that controls
the macroscopic behavior as seen through the diffusion con-
stant. We also speculate that the algebraic decay seen in the
relaxational part of the dynamics is related to avalanches of
elementary flips and could be a manifestation of self-
organized criticality.
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