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Abstract. – The anomalous dimension of the lattice London superconductor is determined
from finite-size scaling of the susceptibility to be ηφ = −0.79(1). It is furthermore found that
the vanishing of the vortex loop line tension in the 3D XY model, which should be related to
that exponent, agrees reasonable well with this value of ηφ. Deviations from this behavior are
however also identified and it is suggested that they are an effect of the vortex loop intersections
and therefore will vanish only in the limit of low vortex density.

The properties of the Meissner transition is a classical problem in statistical physics.
Whereas this transition was originally believed to always be of first order, the work by Das-
gupta and Halperin [1] gave strong arguments that the transition should instead be continu-
ous. The argument is based on a duality transformation of the lattice London superconductor
(LLS) and suggests that the transition should be 3D XY-like, but with the temperature scale
inverted. A direct consequence of this relation is the expectation that the correlation length
exponent ν should be the same in the superconductor as in the 3D XY (planar rotor) model.
However, with fluctuations in both the phase angle and the gauge field, it becomes possible
to define two characteristic lengths, and the behavior of the magnetic screening length λ has
recently been a subject of some controversy [2, 3]. The current evidence [4, 5] points to a
scenario where both characteristic lengths diverge with the same exponent. This is related to
the presence of an anomalous dimension ηA = 1 for the gauge fluctuations [3].

What is needed beside ν and ηA for the characterization of the universality class of the
transition is a knowledge of the anomalous dimension ηφ associated with the phase correlations.
This quantity was determined to be ηφ = −0.20 from a renormalization group calculation to
one loop order [3]. Determinations from simulations have so far only been indirect through the
properties of vortex loops in the 3D XY model [5–7]. The main motivation for these analyses
was the possible connection between the sign of ηφ and the existence of a vortex loop blowout
transition in high-Tc superconductors in applied magnetic fields [6, 8].

In this letter we report on a direct determination of the anomalous dimension ηφ from
Monte Carlo (MC) simulations of the LLS that gives a surprisingly large negative value,
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ηφ = −0.79 ± 0.01. We also consider in detail the approach to determine this exponent from
the properties of the vortex loops in the 3D XY model. The conclusion from that study is
that there is a reasonable agreement with the expected behavior, but also some deviations
close to criticality. It is argued that these deviations are due to vortex loop intersections and
therefore will vanish only in the limit of low vortex density.

The Hamiltonian of the LLS [1,4] is

H =
∑
iµ

{
U(θi+µ̂ − θi − Aiµ) +

1
2
Jλ2

0[D × A]2iµ

}
, (1)

where θi is the phase of the superconducting wave function on site i and Aiµ is the vector
potential on the link starting at site i and pointing along µ̂. The sum is over all bonds of a
3D simple cubic lattice of unit grid spacing and µ = x, y, z. In the first term, the kinetic
energy of flowing supercurrents, U(ϕ) is the Villain function [9]

e−U(ϕ)/T =
∞∑

p=−∞
e−J(ϕ−2πp)2/(2T ). (2)

In the second term, the magnetic-field energy, λ0 is the bare magnetic penetration length and
D × A is the discrete circulation of the vector potential.

In our simulations we chose λ0 = 0.3 to be able to compare with ref. [4] and fix the gauge
through D · A = 0 to facilitate a simple determination of the spin correlations. The spin
correlations defined here in the Landau gauge are identical to gauge-invariant correlations
which display long-range order below the transition [10]. To fulfill this constraint we update
the Aiµ by simultaneously adding δA to four Aiµ around an elementary plaquette, a procedure
which was also used in ref. [7]. We perform our MC simulations with the standard Metropolis
algorithm, first sweeping sequentially through the phase angles θi and then sweeping three
times with attempts to change the circulation of A in the three different directions. The
length of the runs close to Tc were at least 107 sweeps through the lattice, but often much
longer. The measured quantities discussed here are the second and fourth moment of the
magnetization,

mp =

∣∣∣∣∣
1
L3

∑
i

eiθi

∣∣∣∣∣
p

,

which are used to obtain the dimensionless fraction

Q =
〈m2〉2
〈m4〉 , (3)

similar to Binder’s cumulant, which is used to determine Tc. The susceptibility at the transi-
tion is obtained from the standard relation χ = L3〈m2〉.

The critical temperature for the LLS with the same parameter, λ0 = 0.3, has already been
determined with high precision [4]. Our present analysis of Q, therefore, mainly serves to
confirm that the critical properties may be correctly determined from our simulations with
D · A = 0. Figure 1(a) shows Q vs. temperature for system sizes L = 8, 12, 16, and 24. We
find that the curves for L > 8 cross at T ≈ 0.80. The L = 8 data does however not cross
the other curves at the same temperature, a typical sign of corrections to scaling. This data
is therefore not included in the scaling collapse. To get a more precise determination of Tc

we use all our data for 12 ≤ L ≤ 32 in a narrow range around Tc, |tL1/ν | < 1.1, and assume
the scaling form Q(t, L) = fQ(tL1/ν), where t = T/Tc − 1, and fQ(x) is a scaling function.
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Fig. 1 – Determination of Tc from the crossing of Q given by eq. (3). Panel (a) shows data for L = 8
through 24; the L = 8 data lies below the crossing point. Panel (b) shows the scaling collapse for
sizes L = 12 through 32.

We fix ν = 0.672 [11] and let fQ(x) be a fifth-order polynomial in x. The data collapse
nicely, fig. 1(b), and we find Tc = 0.800± 0.001 in good agreement with Tc = 0.8000± 0.0002
from ref. [4]. Repeating the analysis with ν as a free parameter we obtain ν = 0.70 ± 0.04,
Tc = 0.800 ± 0.001.

To determine the anomalous dimension ηφ we make use of the standard finite-size scaling
relation χ(Tc, L) ∼ L2−ηφ . The susceptibility at Tc = 0.8 is shown in fig. 2(a). The points
do indeed to an excellent approximation fall on a straight line and using data for L ≥ 12
we obtain ηφ = −0.79 ± 0.01. Figure 2(b) shows a determination of the exponent β from
the temperature dependence of 〈m2〉. This data is for temperatures at which we expect the
finite-size effects to be negligible. The result is β = 0.069 ± 0.003 in good agreement with
what we expect from ηφ: β = 1

2ν(d − 2 + ηφ) = 0.070 ± 0.003.
We now turn to the alternative and indirect approach to determine ηφ through the behavior

of the dual model which is the ordinary 3D XY model [1]. The idea [6] is that the vanishing

Fig. 2 – Panel (a) shows a finite-size scaling of the susceptibility at Tc = 0.8. The data fits nicely
to a line with slope 2 − ηφ = 2.79. Panel (b) shows the determination of the exponent β from the
T -dependence of 〈m2〉 for L = 64.
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of the line tension of the vortex loops (see below) as T → T−
c is governed by γφ,

ε ∼ (1 − T/Tc)γφ , (4)

which is related to ηφ through the Fisher scaling relation γφ = ν(2−ηφ). The basis for eq. (4)
is the connection between the field theory that corresponds to the LLS and a gas of interacting
loops [6,12,13]. Whereas this less direct determination of ηφ of course is more prone to errors,
it is interesting to examine if the same value of ηφ can be obtained in that way. We will in the
following examine the vanishing of ε for two different cases and also comment on the analysis
in ref. [6] that gave ηφ ≈ −0.18.

The standard way to locate vortices in a XY model is from the angular difference ϕij =
θi − θj between nearest neighbors, with |ϕij | < π. For each plaquette the vorticity is then
obtained from

n =
1
2π

(ϕ12 + ϕ23 + ϕ34 + ϕ41). (5)

Since the Villain interaction, eq. (2), essentially is a harmonic interaction where vortices
are included through the integers pij , vorticity may also be defined through these integers as
n = p12 +p23 +p34 +p41. The pij need, however, not be included in the simulations. For each
link we instead first calculate ϕ0

ij = θi−θj and then probabilistically set the angular difference

to ϕij = ϕ0
ij−2πpij , where pij is an integer chosen with the relative weight e−J(ϕ0

ij−2πpij)
2/(2T ).

The vorticity is then calculated from eq. (5). These vortices are exactly identical to the vortex
lines in the dual vortex line model. The density of these dual vortices (DV) turns out to always
be higher than the density of standard vortices (SV).

The simulations of the 3D XY model were performed with the Wolff cluster update method
and Villain interaction (i.e., eq. (1) neglecting the Aiµ) on a cubic lattice with L = 128. The
average for each data point is based on typically 105 measurements. The simulations were
performed with both SV and DV discussed above. The tracing-out of vortex loops was done
by always choosing the path randomly when two (or more) vortex loops meet at an elementary
cube.

After identifying the vortex loops we measure the perimeter p of each such loop. The
distribution D(p) is then calculated from these values.

The line tension ε is obtained by fitting [6]

D(p) ∝ p−α exp[−εp/T ], (6)

with α, ε and a prefactor as free parameters. To get good-quality fits we only used data for
large perimeters, p > 0.8T/ε. Figure 3 shows the line tension ε determined with both SV
and DV. Note that we are here examining a very narrow temperature region to be able to
probe the behavior in the critical region; most data points are within a few percent below
Tc = 3.0024(1) [14]. With logarithmic scales on both axes the slope as T → Tc is expected
to give the exponent γφ. To facilitate a comparison with the above-obtained ηφ = −0.79 we
draw two solid lines in fig. 3(a) that correspond to γφ = ν(2 − ηφ) = 1.87. As seen in the
figure, the data points are in reasonable agreement with this prediction. The indirect method
based on the distribution of vortex loop diameters is thus found to give results for ηφ which
agree with what we found with the direct method.

A more detailed analysis, however, casts some doubts on this agreement. This is especially
clear for the DV data, but a more detailed look at the SV data as in fig. 3(b) shows that the
points start to bend down as Tc is approached. It would at first seem natural to ascribe this
discrepancy to a finite-size effect as the size of the biggest loops starts to approach the size of
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Fig. 3 – Panel (a) shows the line tension vs. reduced temperature from our analyses of the vortex
loops. The agreement with the solid lines with slope γφ = 1.87 appears to be rather good, but a
closer look reveals significant deviations from this behavior. Panel (b) shows the deviation from the
straight line in panel (a) for SV.

the system. This does, however, not turn out to be a tenable explanation: First, the results
do not change markedly when increasing the system size; second, for the temperatures and
lattice sizes in the figure there are no loops with the size approaching the system size, and
finally, the effect of the finite size turns out to work in the opposite direction; it reduces the
number of large loops and would thereby instead give too large a value for the line tension as
T → Tc.

We now suggest that the reason for this discrepancy is that things are messed up by
the vortex loop intersections which are not accounted for in the theoretical considerations
regarding vortex loops. One way to understand the effect of the intersections is through a
Gedanken experiment:

1. Produce a set of vortex loops with the distribution D0(p) = exp[ε0p/T ].

2. Throw them onto a lattice.

3. Apply the loop tracing algorithm.

4. Calculate a new D(p) and determine ε from the decay of D(p).

We will now argue that one would expect the obtained distribution to be different from the
original one, D(p) 	= D0(p) and, more specifically, ε < ε0. With a random tracing of vortex
loops each intersection of two loops will, with 50% probability, make them merge to a single
loop. The number of vortex loops will thus decrease and this implies that the average perimeter
increases. With the assumption that the shape of the distribution remains the same this is
only possible if the obtained line tension is smaller, ε < ε0. This conclusion has been verified
with simulations on a simplified version of the above Gedanken experiment. More details will
be given elsewhere.

For each temperature we may assume that there is a bare distribution D0(p) characterized
by ε0(T ) and that eq. (4) holds for ε0(T ). As discussed above, ε0 is not directly accessible,
but what we obtain after the random tracing is only ε < ε0. This is a possible reason for
the observed deviations from the expected behavior (solid lines) in fig. 3. Since the density
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Fig. 4 – D(p) for the 3D XY model with cosine interaction and splitting of self-intersecting loops.
The fitting lines from [6] do not agree well with our more precise data (solid dots). The inset shows
our values for ε; the slope is clearly different from γφ = 1.45 (dashed line) obtained in ref. [6].

of intersections increases with increasing temperature, the drop of ε as Tc is approached is
precisely what would be expected from this picture. The reason why the high-density data
(DV) is far off, whereas the low-density data (SV) is fairly close to the expected behavior, is
then the higher vortex density in the DV simulations. This, furthermore, suggests that the
theoretically expected behavior of ε could at most be found in models with very low vortex
density at criticality.

The determination of the line tension for vortex loops in a 3D XY model was first made in
ref. [6]. Their simulations were with cosine spin interaction (Tc ≈ 2.2) and a different method
for tracing out the loops; self-intersecting vortex loops are always split into two. They found
ηφ = −0.18 ± 0.07, in agreement with the analytically obtained ηφ ≈ −0.2 [3]. However, a
comparison with our more precise MC data (now obtained with cosine interaction and splitting
of intersecting loops) casts strong doubt on their analysis. Figure 4 shows our values for D(p)
(dots) together with both the data (open circles) and the fitting curves (solid lines) for T = 2.0
and 2.1 from ref. [6]. We first note that the two different sets of MC data agree well. From
the large-p part of the data it is however clear that the fitting curves from ref. [6] do not
agree with our data. The same discrepancy can actually also be seen for T = 2.0 in fig. 3 of
ref. [6]. The inset in fig. 4 shows our values for ε obtained from a fit to eq. (6) only including
data for p > 1.2T/ε. The slope differs clearly from γφ = 1.45 shown by the dashed line. We
therefore conclude that the good agreement [6] with the analytically obtained ηφ ≈ −0.2 was
only accidental. In our analysis the slope approaches γφ ≈ 1.15 as T → Tc. If one instead uses
the ordinary random loop tracing that allows for vortex loop intersections, the line tension is
found to behave much the same as in fig. 3, with both a reasonable agreement with γφ as well
as significant deviations close to criticality. This again shows the central role of the precise
method for tracing out the loops and thereby the intersections for the vortex loop properties.

To conclude, our main result is a direct determination of the anomalous dimension in the
LLS, giving ηφ = −0.79±0.01. We have also attempted a determination of the same quantity
from the vanishing of the line tension in the 3D XY model. We found a reasonable agreement
when using random intersections but also concluded that this method cannot be used for
precise determinations of the exponent. The reason is the presence of deviations close to Tc

which we suggest to be due to the vortex loop intersections. This implies that the “correct”
behavior as T → Tc can at most be expected in the limit of low vortex density.
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