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Kink-antikink unbinding transition in the two-dimensional fully frustrated XY model
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We carry out numerical simulations to directly confirm the existence of a kink-antikink unbinding transition
along Ising-like domain walls in the two-dimensional fully frustradéd model. We comment on the possible
implications of kink-antikink unbinding for the bulk phase transition of the model.
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|. INTRODUCTION Il. THE MODEL
The two-dimensional(2D) fully frustrated XY (FFXY) A. The fully frustrated XY model
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board pattern of vortices in the ground state leads to an Ising-
like discreteZ(2) symmetry in addition to the Kosterlitz- N = AN ar) _
Thouless-like continuous @) symmetry associated with the HLOr)]= 2 VLA + ) - o) Aulri)]- @
uniform rotation of all phase anglést remains controversial
whether there are two distinct phase transitiohg<T,  Here (ry) is the thermally fluctuating phase angle of the
with Txt marking the breaking of the @) symmetry andl;,  planar XY spin on siter;=xX+y;y (x,y; integer$ of a
marking the breaking of th&(2) symmetry}~® or, rather, a L,XL, periodic square lattice/z=X,y labels the bond
single transition in which both symmetries are brokendirections of the lattice, andA,(r;) is the quenched
simultaneously. gauge field on the bond leaving sitgin direction & [with

. Rece_ntly, Ko_rshuncﬁ_/presented an argument.for a new A_#(ri+[L)E-AM(ri)]_ For full frustration, theA,(r;) are
interfacial transitionT,, in the 2D FFXY model, lying well  constrained so that their directed sum going counterclock-

below the bulk transitiofs), arising from the unbinding of \yise around any plaquette of the lattice is fixedmodulus
step excitations of unit heightkink-antikink pairs”) on the 27 to

domain walls associated with ti&2) symmetry. Korshunov
argued that the kink-antikink unbinding transition leads to a SALr) = 2)
decoupling of phase coherence across domain boundaries, p “
supporting the identification of the KF with the coupled ) i .
XY-Ising modeP Korshunov further argued that this effect T0 implement the constraint of E¢2), we use the specific
necessarily leads to the scenario of two distinct bulk transigauge choice,
tions, Ty <T,. _ _ x

EarIiKeTr, Lele and co-workers, first in simulations of the 2D ALr) =0, Ar) = (= 1(/2). (3)
FFXY model with Langevin dynamic®,and then in its dual The interaction potential(¢) is periodic on(0, 277), with
Coulomb gas (CG) model with Monte Carlo (MC) 3 single quadratic minimum at=0. We will take forV(¢)
dynamics;* found evidence for a transition in domain wall e commonly used Villain functiot?
morphology in simulations of the ordering kinetics of do-
main growth following a sudden quench. They interpreted - )
this as a finite-temperature roughening transition of the V(g)=-TlIn| > ed¢-2mm72T | (4)
Ising-like domain walls. Jeoet all? made similar conclu- m=—
sions in simulations of the 2D B&Y with resistively shunted
junction dynamics. Korshundvhowever, has argued that
domain walls should be rough at all temperatures.

In this paper we present direct numerical evidence dem- ori + L) - 0(r) =A,, (5)
onstrating the existence of the kink-antikink unbinding tran- ) . .
sition at a temperaturd@,, below the bulk transitiofs). In ~ WhereA, €[0,2m) is the total twist applied across the sys-
agreement with Korshunov’s predictions, we show that phastem in directioni. A, =0 corresponds to periodic boundary
angles on opposite sides of the domain wall decouple aboveonditions. Alternatively, if one makes the change of vari-
T, The numerical value we find fdF,, is comparable to that ables,¢'(rj)=é(r)-r;-d, with d,=A,/L,, then the system
of the morphological transition found by Lest al,'* how- has periodic boundary conditions in ti#(r;) and the ap-
ever, we explicitly demonstrate that the domain walls areplied twist appears as an additive constant to the gauge field,
rough at temperatures well beldly,. This indicates that the A, (r)) —A,(r))+A,/L,.
transition seen by Lee and co-workers was really kink- To study the behavior of the Ising-like domain walls we
antikink unbinding, rather than roughening. consider systems with sizds=L, L,=L+1, with L being

iu

The boundary conditions for the phase angles are, in the
most general case, given B§®
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FIG. 1. Various configurations of the domain wall in a 0.05 | I," T=070]J ]
L X (L+1) system:(a) ground state(b) finite width step of unit o 3 , o
height (kink-antikink paiy, (c) isolated kink of unit height(d) iso- 0.00 L L N L ¢
lated kink of height two. A+) indicates the presence of a vortex in 0 /2 k11 3n/2 2n
the XY model, or a chargeg;=1/2 in thedual Coulomb gas; &) A,
indicates the absence of a vortex in ti& model, or a charge
gi=—1/2 in the dual CGX is the horizontal direction, an§l is the FIG. 2. Variation of total free energly with total twist A, ap-
vertical direction. plied transverse to the Ising-like domain wall, for two different

temperatures in a system of sike128.

even. The odd length, forces into the ground-state check-
erboard pattern of vortices a single straight domain wall runbroken translational symmetry; due to the free energy barrier
ning the length of the system in tfedirection. This is illus-  Petween the two minima, states in which the domain wall is
trated in Fig. 1a), where a(+) signifies a vortex in the phase at an even height cannot be reached from states in which the
anglesé(r;), and a(-) signifies the absence of a vortex. ~ domain wall is at an odd height. As noted by Korshufov,
Phase coherence in the X¥model is most conveniently this broken symmetry is restored when phase coherence
studied by considering the dependence of the total free erffansverse to the wall is lost, i.e., wh&,) becomes inde-
ergy F on the total twistA, applied across the systejgee ~ Pendent ofA,, and so the free energy barrier between
Eq. (5)]. In a phase-coherent ordered state, we expect tha}y=0 andA = vanishes. Alternatively viewed, when the
F(A,) varies with the twistA ,; in a phase-incoherent disor- domain wall changes its height by an odd number, the system
dered state, we expe&(A,) is independent oft, in the ~ @cquires an average twist af in the y direction. Thus, re-
thermodynamic limit ofL — . The dependence of the free storing the symmetry of domain-wall translations leads to
energy onA,, is readily obtained by usinfuctuating twist phase-angle fI_uctu_auons that destroy phase coherence trans-
boundary conditiond® in which one treats the applied twist Verse to the direction of the wall. _
A, as a thermally fluctuating degree of freedomZIfs the In our numerical work we will use two convenient mea-
partition function for this ensemble, then the probability SUres of the variation of(A,) with A,. The first is the

P(A,) of finding a state with a particular twidt, is given by ~ helicity modulusi™ Y, which measures the curvature of
F(A,) at its minimum,

e F(A )T
P(A,) = - (6)
L2 #F
; ; Y, (L,L)=—"* —
and so the free energy with respect to a reference thjgis BATXITY L, ‘9Ai A o
=
F(A,) —F(A,0) =—-TIn[P(A)/P(A,0)]. (7) 1 1 ,
The probability P(A,,) is directly measured within our = LL, ;(V (¢in)>0_-|_—<[;\/ (¢iu)] > J
fluctuating twist Monte Carlo simulation. We choose the ref- 0
erence twistA 4 to be the value of the twist that minimizes (8)

the free energy(A ). For the gauge choice of E(), it is

straightforward to see that the minimizing twist in theli-  where iy =dur)=0(ri+u)—6(r)—A,r), V' and V" are
rection is atA,,=0. In our simulations we keep a fixed twist the first and second derivatives of the Villain function of Eq.
A,=0, and consider only the dependence of the free energf), and(: - -), indicates a thermodynamic average in the en-

on the varying twistA,, transverse to the Ising-like domain semble with fixed twist\ ,=0. A second measure is
wall that is introduced in out X (L+1) systemgsee Fig.

1(a)]. In Fig. 2 we show sample results from our simulations
for F(A,)—F(0) vs A, at two different values of <T,, for a
system of sizeL=128. We see thaF(A,) has two equal
minima at A,=0 and 7 (i.e., periodic and antiperiodic WhereF, andFy, are the maximum and minimum values
boundary conditions One of these minima corresponds to of F(4,), as A, is varied at fixedA,=0. SinceY, is an
states where the domain wall sits at even values of the heiglntensive quantity, it should approach a value independent of
y, while the other corresponds to states where the domaifystem size asL—x. The parameterAF scales as
wall sits at odd values of the heiglyt Below the kink-  Y(A/L)?LP in D dimensions, and so fob=2 it also be-
antikink unbinding transitiorT,,, the system is in a state of comes independent of system sizelas .

AF = Frax— Fmin = F(7/2) - F(0), (9
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B. The Coulomb gas

Although our simulations are carried out in tKe vari-
ables 4(r;), it is helpful to consider the situation from the
viewpoint of the dual CG model of logarithmically interact-
ing half-integer charge’s® For the case of a fixed total twist
A, the XY Hamiltonian of Eq.(1) maps onto

HCG:HO+H1. (10)
H, is the logarithmic interaction of the charges,
1
HOZE(ZWJ)E aiG(ri —rja;, (11)

i
where g;=+1/2 are thehalf-integer charges, neutrality is
imposed,;q;=0, andG(r) is the 2D periodic lattice Cou-
lomb potentiatt® with G(r) ~—In|r| for large 1<|r|<L/2.

PHYSICAL REVIEW B 71, 104423(2005

entropy wins out over energy, and there is a kink-antikink
unbinding transition atT,,, where €,,.{(T,) —. Above
T,» the kink-antikink unbinding leads to diverging dipole
fluctuations in theX direction, driving &> (and henceY,)
to zero.

The problem of logarithmically interacting charges in one
dimension(1D) has been treated by Bulgad&@koshuno$
has applied these results to the unbinding transition of the
kink-antikink pair along the one-dimensional Ising-like
domain wall. To include the screening effect of charge
excitations in the bulk of the system on either side of the
Ising-like domain wall, we take as the coupling between
kink-antikink pairs separated at a large distance to be the
helicity modulus of the FKY for an ordinaryL X L system,
Y(L,L), in the limit of large enough.. Applying Bulgada-
ev’s exact result for the unbinding transition temperature, we

H, arises from the fixed twist boundary condition and isconclude

given by"18

27Tpx>

2mp
levx(Ax_Ag"' TY) +VY<A)’_A?’_ L
X

y

(12)

whereV, andV, are Villain functions as in Eq4), but with

couplingsJ,=J(L,/L,) andJ,=J(L,/L,), respectively, ang
is the total dipole moment,

p=2ar,

and AP=3,A(x,y=0), AJ=3,A(x=0.y). For the gauge
choice of Eq.(3) we have

AY=0, Ad=(L+1)m2.

(13)

(14)

For the ground state as illustrated in Figa)l one has
py=0, and so again it is easy to see from Etp) that the
total ground-state energy is minimized whan=0. How-
ever, for this ground state one hagg=L/4, hence the
ground-state energy is minimized whef,=(L+1)m/2
—a/2=La/2. If the location of the domain wall were shifted

T

27Y (L, L) Gk
—_—= Tw=—=Y(L,L).
w=7Y(LL)

=2 or
Tw

One can reproduce this result using a Kosterlitz-Thouless-
like argument as follows. In analogy with Leet al,'! we
consider the total free energy to have a single “fr@eg.,
unbound kink in the domain wal[see Fig. {c)]. Fixing the
kink at a given position on the domain wall, its free energy
(averaging over all other fluctuations that of an isolated
+1/2 vortex in a medium with phase stiffne¥s$L,L); here
we use Bulgadaev’s restflthat kink-antikink pairs in 1D do
not lead to a renormalization of the kink-antikink interaction,
and so any screening of their interaction is due to charge
excitations in the bulk on either side of the domain wall, and
so accounted for by the large value of Y. As L—o,
the leading contribution to this energy B==q, Y In L.

The entropy of the kink is just that associated with its posi-
tion along the domain wallS=-InL. Combining gives
Frink=E-TS=(w#Y/4-T)In L, which asL—o gives the in-
stability temperature for the formation of free kinks as
T,=7Y/4, in agreement with Eq15).

(15

by one unit in height, then the ground state would have

p,=-L/4, and the energy would be minimized when

Ay=(L+1)7/2+mI2=L7w/2+m. For L even, as we have
required, these two values, modulusr,2are just equal
to 0 andr.

The helicity modulusY,/J maps14°onto the inverse
dielectric functione,* of the CG. As noted by Korshunéin

IIl. NUMERICAL RESULTS
A. Helicity modulus

We now present our numerical results. At each tempera-
ture, our simulations consist of typically 3010° ordinary
MC passes through the entire lattice for the largest system

order for the domain wall to move a unit lattice spacing insizes. In Figs. 3 and 4 we plot the helicity modilj and

height, it must first form a unit step of finite width ¢ must
be even to preserve charge neutraligee Fig. 1b)]. We
denote the left-hand edge of the step as khnk, and the
right-hand edge as thantikink As the kink and antikink

Y, vs T, as computed by Eg8) in an ensemble with fixed
twists A,=A,=0. We show an “ordinary” cas@o domain
wall at T=0) of size 64X 64, which is large enough that any
finite-size effects are negligible for the temperatures shown.

separate out to infinity, the domain wall moves one unit inln comparison, we also show several “anomalous” cases

height. As shown by Halsey, a corner in a domain wall

(percolating domain wall aE=0) of sizesL X (L+1). For the

carries with it a net charge of +1/4. The kink, consisting ofordinary caseY,=Y\, and the bulk transitiofwhere theY ,
two successive corners with equal +1/4 charge, carries a nptmp discontinuously to zero in the thermodynamic linisf

charge ofqy,=+1/2; theantikink carries a net charge of

at Txr=0.81J. In comparison, a& increases in the anoma-

Owink=—1/2. At low temperatures, the logarithmic attractionlous case,Y, (parallel to the domain wallin Fig. 3 ap-
between the kink and antikink charges keeps them boungroaches the value of the ordinary case, and so presumably

with a largest separatiofi,,,(T). At higher temperatures,

vanishes at the sanik. However the curves of , (trans-
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FIG. 3. Helicity modulusY, vs T for different system sizes
LyXLy. As L—e, Yy(L,L+1) and Y,(L,L) approach the same
curve.

verse to the domain walin Fig. 4 clearly decrease below

that of the ordinary case and presumably vanish in the ther-

modynamic limit at a loweil,,.

The reduction seen iiY, for the L X (L+1) systems, as
compared to th& X L system, shown in Fig. 4, is due to the
kinks at the Ising-like domain wall. To explicitly see this, we
can consider the helicity modulus at tfieite wave vectqr

Yy(ky), defined as the response to a small sinusoidal pertur-

bation in the vector potentia(r;). If we take

Ar) — AYry) + 2 5A €% (16)
kX
thenY,(k,) is defined b§2*
1 &F
Yy (ko = (17)

LLy A0 A |,

In view of the discussion following Eq(5), equating the
application of a uniform twistA, to the addition of a con-
stant to the gauge field,,, the helicity modulus/, of Eq. (8)
can also be viewed as theero wave vectorhelicity

Yy(k=0). In the CG representatiory(k,) becomes the
usual formula for the wave-vector-dependent inverse dielec
tric function41°

0.8

Ty(L LT

128x129
256x257
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0.2

Fo avooey
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FIG. 5. Wave-vector-dependent helicity moduNig(k,) vs Lk,
at several different temperaturégor system sizes X (L+1), with
L=64 (solid symbol$ andL =128 (open symbols The data for the
differentL collapse to a common curve at eath

4723 (a(k)a(= kd)
T LLK

Yy(k)d=1~ , (18)

whereq(k)==,""ig; is the Fourier transform of the charge

distribution.

Unlike Y, of Eq. (8), which measures the response to
uniform tW|st applied at the boundari€s,(k,) measures
the response to a spatially varying twist applied throughout
the bulk of the system. For a homogeneous system with
periodic boundary conditionsone in general expects
Yy =limy _oYy(Ko), since the spatially varying twist becomes
uniform ask,— 0, andéA, — A,/L,. Forfree boundary con-
ditions however, where the phase anghex,L,) is not
coupled to the phase angl¥x,0), this equality does not
hold. For free boundary conditions, the absence of any con-
straint[such as in Eq(5)] relating 6(x,L,) to #(x,0) means
that the phase angles are free to untwist any additive constant
to the gauge field,Ay(rj)—Ay(r)+A,/L,, by choosing
0(x,y+1)-0(x,y)=A,/L,; hence, if one computes, by Eq.

(8) in a free boundary ensemble, one necessarily\ja0 at

any temperature. For the spatially varying twist of Ebtp),
however, no such transformation is possible since the per-
turbmg twist is a strictly transverse vector function, while the
phase angle differences give a strictly longitudinal vector
function. In this case one finds that uxrnon(kX) has the
same value, ak — =, that one has for the system with peri-
odic boundary conditions.

We expect a similar effect to be true in our present case.
The kink-antikink pairs confined to the one-dimensional
Ising-like domain wall can be viewed as a relaxation of the
boundary condition. They can unwind, or soften, the energy
of a uniform twistA, applied at the boundary, but cannot
unwind a spatially varying twisbA, applied throughout the
bulk of the system. We therefore expect that, las>w,
Iimkx_,on(kx) will equal the value ofY, obtained for an
ordinaryL X L system, representing the stiffness of the bulk

FIG. 4. Helicity modulusY, vsT for different system sizes Of the system on either side of the domain wallj; however,
LeX Ly AsL—c0, Yy(L,L+1) vanlshes at a temperature lower than Will be a lower value including effects due to the polarization

whereYy(L L) vanlshes The intersection of the dashed line with Of the kink-antikink pairs localized to the domain wall.
Y,(L,L) indicates the kink-antikink unbinding temperature In Fig. 5 we plot, at several different temperatures around
T,,=0.71] predicted by Eq(15). T, Yy(ky) for finite k, for LX(L+1) systems with sizes
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peraturesT. The values at /=0 correspond t&',, for an ordinary ;/ —=—0.76
64x 64 system. Solid lines are fits to a quadratic polynomial. 0.1 ——0.78 1
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L=64 and 128. When we plot the results versus the scaled 0 0.02 0.04 006 0.08
axis of Lk,, we see that the data for the two different system 1L

sizes collapse to essentially a common cunfgk,), at each
temperature. As L—o, such scaling implies that
Iimkﬁo[limLﬁny(kx)]:Iim,Hoou(K) is different from Y,,
just as we have argued. We may estimate, ligu(x) by

taking the maximum value of ,(k,) for each system size. ~ {ems withL ranging from 32 up to 512. We note that at low
In Fig. 6 we plotYmax= ma&X[Yy(kx)] versus 1L for the T, the behavior ofAF is nonmonotonicasL increases, the

O§ystem first softens with a decreasia§, but then stiffens
again asAF reaches a minimum and then increases. We de-
note the system size at this minimum &y Since the system
becomes stiffer on length scalés> &, we assume thaf,
determines the size of the largest kink-antikink pairs on the
domain wall. At higherT, the minimum inAF disappears,

1o/

FIG. 7. AF of Eq.(9) vs 1/L at various temperatures for the 2D
FFXY model of sizel X (L+1).

L=32, 64, and 128. At 1/=0 we plot the value o (L,L)

for L=64, representing the large limit for the helicity
modulus of the ordinary system without the Ising domain
wall. We see that the values '™ extrapolate perfectly to

Yy(L,L) as 1L — 0. This confirms the following conclusion. ; )

AS L—o in an Lx (L+1) system, the finite wave-vector and AF continues to decrease hsmcregses. The tempera-
helicity Y..(k.) i o th ' dina helicit dqul ture that separates the two behaviors is somewhere between
elicity Y, (k) is equal to the corresponding helicity mo UlUS 0681 and 0.74, in good agreement with the result

of an ordinaryL XL system forall finite values ofk; this 1 _q 713 from Fig. 4, based on the theoretical prediction of
measures the stiffness of the bulk of the system on either si (15).

of the Ising domain wall, and it is unaffected by the kinks on "¢ 4 further check on our results, we have also directly
the wall. However the zero wave-vector respodSeto a  gjmyjated a one-dimensioflD) neutral system of logarith-
uniform twistA,, shown in Fig. 4, is softened and abolig  ically interacting chargegy, = +1/2. The 1Dinteraction
reduced to zero—by the polarization of the kinks on the,ientia) is taken as the 2DX L lattice Coulomb potential,
domain wall. as in Eq.(11), but with the height separation fixed gt 0.
We use an interaction coupling constant af2/(L,L), with
Yy(L,L) obtained from our simulations of the ordinary

Returning to Fig. 4, we have indicated the kink-antikink L X L 2D FEXY model forL=64, in order to model as closely
unbinding transition temperatuilg, as predicted in Eq15), as possible the interaction between kinks on the domain wall
by the intersection of the lineT™ #J with the helicity modu- in the trueL X (L+1)FFXY model system. Within this 1D
lus of the ordinaryL X L system. This gives an estimate of simulation we measure the normalized histogram of the total
T,=0.71). This value occurs noticeably above the pointdipole momentP(p,), and use it to constru&what would
where many of the curve¥,(L,L+1) appear to cross. Such be the free energl(A,) of the corresponding X (L+1) 2D
a crossing point, if remaining constantlagncreases, is gen- FFXY system,
erally taken as an estimate for the phase transition in a 2D
XY system. To explain the difference between this crossing F(A,) = -TIn| X P(pe Ay Aj-@mpdUNT | 4 const,
point at~0.60] and the above estimaig,=0.71], we need Px
to examine the finite-size dependencegfL,L+1) more (19)
carefully.

To get the most accurate results, we have found it better to/hereVy is the Villain function as in Eq(12), and “const” is
work in the fluctuating twist ensemble and compute thea constant term independent &§.
phase-coherence paramefdf of Eq. (9), rather than work In Fig. 8 we plot the resulting AF=F(m/2)
with periodic boundary conditions and measdie In Fig. 7 —F(0) versus 1L for the same temperatures and siteas
we plot our results foAF versus system size ILfor various  in Fig. 7. The agreement between Figs. 7 and 8 is not exact,
temperature§ above and below,,. We uselL X (L+1) sys-  since the coupling between kinks is only equal to¥2(L,L)

B. Finite-size dependence
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FIG. 10. Domain-wall width squaredy?, vs L for several dif-
0 002 004 006 008 ferentT. Straight lines are linear fits, showing rough domain walls
/L at all T, even belowT,,=0.71]. The inset shows the slopes of the
curves,dW2/dL, vsT.

FIG. 8. AF of Eq. (9) vs 1/L at various temperatures as esti-
mated from the dipole histogram of a 1D interacting kink model
(see text

lations of Leeet al. are on a lattice of size=64. From Fig.

9 we see thaf,~ 32 atT/J~0.58, hence kinks already look
unbound above this temperature for such a small system size.
on large length scales; the true screening of the kink inter-The |arge values of, can also be compared to other length
action due to charge excitations in the bulk on either side 0§cales in the system. The correlation length of the Ising-like
the domain wall is length scale dependent. Moreover, thgyder parameterg;, gives the typical size of an Ising-like
domain wall in the 2D FKRY model is not a strictly straight gomain excitation in an ordinaryL X L FFXY model.
one-dimensional line; the roughness of the domain V&&le  From Ref. 6(see Fig. 15we find thatz, is quite small below
the following sectiohmeans that height fluctuations can addT ~0.71, in particular& < 2.5 for T<0.77). Thus we ex-

to the distance of separation between kinks. Neverthelesgect that kink-antikink pairs on the domain wall enclosing a
the agreement is qualitatively very good, indicating againypical thermally excited Ising-like domain are always effec-
that it is the polarization of kink-antikink pairs along the tjvely unbound. The energetics of kink-antikink unbinding
Ising domain wall that is responsible for the decrease in thgyi|| only effect the morphology of domains that aneuch

phase stiffness transverse to the domain wall. larger than those due to typical thermal excitations.
One evident feature of both Figs. 7 and 8 is the very large

finite-size effect. The asymptotic behavior®F only sets in
at quite large length scales. Equivalently, the correlation C. Roughening
length of the kink-antikink pairsg,, grows large well below
T,=0.71]. Fitting the data of Fig. 7 to a quadratic inln
and determiningg, from the minima of these fitted curves
we plot the resulting versusT in Fig. 9. The rapidly grow-
ing & means that it is difficult to get a very precise estimate
of T,, directly from the data of Fig. 7, without going to pro-
hibitively large system sizels>512. We believe that this is
also the reason that Lest all! report a lower valu& of
T/J=27(0.09£0.01=0.57+0.06 for the “roughening transi-

Finally, we consider the roughness of the domain wall. As
noted by Koshuno¥,an isolated step on a domain wall of

' height 2[see Fig. 1d)] carries no net charge, each corner
giving opposite 1/4 charges that therefore cancel. Such iso-
lated height of 2 steps therefore cost finite energy, and should
roughen the domain wall at any finite temperature. To verify
this we have explicitty measured the domain-wall width
squared,

tion” tem [ i . imu- _
perature in their dual 2D Coulomb gas. The simu W= Nig (V9 -V, 20
S S
400 : T T
350 & ° ] where s is an index that counts horizontal length traveled
300 £ 3 along the domain walls=x if there are no overhanysy(s)
i . 1 is the height of the domain wall at indesx y is the average
P 200 £ 3 height of the domain wall in the particular configuration, and
1(5)8: o ™ : Ng is the number of horizontal links il”.l the domain yvaII
ok . ° v ] (Ng=L if there are no overhanysTo avoid problems with
0bo % ¢ , , periodic boundary conditions, we always measure the do-
055 060y 068 070 0.75 main wall height as relative to some initial starting position.

In Fig. 10 we plotW? vs L for various temperatures. The
FIG. 9. Kink-antikink correlation lengtt, vs T, obtained from  linear growth inW? asL increases indicates that the domain
the data of Fig. 7. wall is rough for all temperatures shown, includifig< T,,,.
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The domain-wall diffusion constantd\W?/dL, shows no ob- those which carry no dipole moment and so cannot give any
servable singularity at,,=0.71] (see the inset to Fig. 20  reduction inY. Fortunately, oncé& increases abovg,, kink-
antikink pairs on the boundary of the domain are free to
unbind, and the Ising domains can now acquire large dipole
moments at no cost in free energy. The scenario of Teitel and

Our numerical results demonstrate the existence of thdayaprakash is now restored. This conclusion is in complete
unbinding transition for kink-antikink pairs along the domain agreement with the numerical work of Olssthwho finds
wall of Ising-like excitations in the 2D PEY model and that two distinct transitions aly;<T,, and argues that the non-
the behavior of this transition is in good agreement with thesing-like critical behavior claimed by sorhat T, is in fact
theoretical predictions of KorshunéwVe show that domain an artifact of finite size effects.

walls are rough at all temperatures, and therefore argue that The kink-antikink unbinding transition may also have im-
the “roughening transition” claimed by Lee and Plications for the nonequilibrium steady state behavior of the

co-workerd®!is really the kink-antikink unbinding transi- System when the vortices are driven by a uniform force, such

tion. We show that the effects of kink-antikink pairs are notas is the case for a fully frustrated Josephson junction array
readily apparent for Ising-like domains, such as are typicallyin an applied uniform dc curreiit Sincel couples linearly to
present due to thermal excitation; because of the large lengthe total dipole moment of a domap the force can lead to
&, such effects are important only for much larger domains@n instability* in domain growth, provided the free energy
One of Korshunov's main motivations for investigating of exciting the domain scales less than linearly withFor
the kink-antikink unbinding transition was to argue that suchT < Tw, the binding of kinks to antikinks prevents large di-
a transition necessarily implies the existence of two separateole moments from building up on domains. The Ising-like
bulk transitionsTx+<T,. We now present our own thoughts domains, whose free energy scales like the domain lefgth
on this issue. In the original paper by Teitel and are only those domains whose total dipole moment vanishes,
Jayaprakashiwo possibilities were considerel,;<T,and  and, hence, these domains remain stable, and the Ising-like
Ter=T,. In discussing the first case, Teitel and JayaprakasRrder should persist at small drives. Far>T,, kink-
presented the following scenario. In terms of the dual C@ntikink pairs can unbind, resulting in domains whose dipole
model, the helicity modulud” gets reduced from it§=0  mMoment may scale at least proportional to their lengtin
value by fluctuations that produce dipole moments. If Isingthis case, when the current exceeds an amount proportional
domains of typical siz&, carried a total dipole moment pro- t0 the Ising domain surface tension, domains will become
portional to their size, they would drivé — 0 continuously ~ unstable to growth and the Ising-like order will be destroyed.
due to the diverging, asT—T, from below. However, in
addition to these domain excitations, there are also pair ex-
citations. The original Kosterlitz-Thouless instability criteria  We wish to thank S. E. Korshunov for his very helpful
would imply that pairs unbind onc¥ falls below the critical ~ correspondence and comments on an earlier version of this
value Y(T)=2T/m, which must happen at sonigr below  manuscript. This work was supported by the Engineering
T,. However, if one computes domain energied a0 (and  Research Program of the Office of Basic Energy Sciences at
presumably the same holds for domain free energies at lowhe Department of Energy Grant No. DE-FG02-89ER14017
T), one finds that it is only the domains witkanishingtotal  and the Swedish Research Council Contract No. 2002-3975.
dipole moment that have energies which scale with the peTravel between Rochester and Ume& was supported by
rimeter; i.e., the only domains which are “Ising-like” are Grants Nos. NSF INT-9901379 and STINT 99/90).

IV. DISCUSSION
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