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We carry out numerical simulations to directly confirm the existence of a kink-antikink unbinding transition
along Ising-like domain walls in the two-dimensional fully frustratedXY model. We comment on the possible
implications of kink-antikink unbinding for the bulk phase transition of the model.
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I. INTRODUCTION

The two-dimensionals2Dd fully frustrated XY sFFXYd
model 1,2 is one of the most intriguing of the “simple” sta-
tistical mechanics models. The doubly degenerate checker-
board pattern of vortices in the ground state leads to an Ising-
like discreteZs2d symmetry in addition to the Kosterlitz-
Thouless-like continuous Os2d symmetry associated with the
uniform rotation of all phase angles.3 It remains controversial
whether there are two distinct phase transitionsTKT,TI,
with TKT marking the breaking of the Os2d symmetry andTI
marking the breaking of theZs2d symmetry,4–6 or, rather, a
single transition in which both symmetries are broken
simultaneously.7

Recently, Korshunov8 presented an argument for a new
interfacial transitionTw in the 2D FFXY model, lying well
below the bulk transitionssd, arising from the unbinding of
step excitations of unit heights“kink-antikink pairs”d on the
domain walls associated with theZs2d symmetry. Korshunov
argued that the kink-antikink unbinding transition leads to a
decoupling of phase coherence across domain boundaries,
supporting the identification of the FFXY with the coupled
XY-Ising model.9 Korshunov further argued that this effect
necessarily leads to the scenario of two distinct bulk transi-
tions,TKT,TI.

Earlier, Lee and co-workers, first in simulations of the 2D
FFXY model with Langevin dynamics,10 and then in its dual
Coulomb gas sCGd model with Monte Carlo sMCd
dynamics,11 found evidence for a transition in domain wall
morphology in simulations of the ordering kinetics of do-
main growth following a sudden quench. They interpreted
this as a finite-temperature roughening transition of the
Ising-like domain walls. Jeonet al.12 made similar conclu-
sions in simulations of the 2D FFXYwith resistively shunted
junction dynamics. Korshunov,8 however, has argued that
domain walls should be rough at all temperatures.

In this paper we present direct numerical evidence dem-
onstrating the existence of the kink-antikink unbinding tran-
sition at a temperatureTw below the bulk transitionssd. In
agreement with Korshunov’s predictions, we show that phase
angles on opposite sides of the domain wall decouple above
Tw. The numerical value we find forTw is comparable to that
of the morphological transition found by Leeet al.,11 how-
ever, we explicitly demonstrate that the domain walls are
rough at temperatures well belowTw. This indicates that the
transition seen by Lee and co-workers was really kink-
antikink unbinding, rather than roughening.

II. THE MODEL

A. The fully frustrated XY model

We study the 2D FFXY model on a square lattice, given
by the Hamiltonian,1,2

Hfusr idg = o
i,m

Vfusr i + m̂d − usr id − Amsr idg. s1d

Here usr id is the thermally fluctuating phase angle of the
planar XY spin on site r i =xix̂+yiŷ sxi ,yi integersd of a
Lx3Ly periodic square lattice,m̂= x̂, ŷ labels the bond
directions of the lattice, andAmsr id is the quenched
gauge field on the bond leaving siter i in direction m̂ fwith
A−msr i +m̂d;−Amsr idg. For full frustration, theAmsr id are
constrained so that their directed sum going counterclock-
wise around any plaquetteP of the lattice is fixedsmodulus
2pd to

o
P

Amsr id = p. s2d

To implement the constraint of Eq.s2d, we use the specific
gauge choice,

Axsr id = 0, Aysr id = s− 1dxisp/2d. s3d

The interaction potentialVsfd is periodic ons0,2pd, with
a single quadratic minimum atf=0. We will take forVsfd
the commonly used Villain function,13

Vsfd = − T lnF o
m=−`

`

e−Jsf − 2pmd2/2TG . s4d

The boundary conditions for the phase angles are, in the
most general case, given by14,15

usr i + Lmm̂d − usr id = Dm, s5d

whereDmP f0,2pd is the total twist applied across the sys-
tem in directionm̂. Dm=0 corresponds to periodic boundary
conditions. Alternatively, if one makes the change of vari-
ables,u8sr id;usr id−r i ·d, with dm;Dm /Lm, then the system
has periodic boundary conditions in theu8sr id and the ap-
plied twist appears as an additive constant to the gauge field,
Amsr id→Amsr id+Dm /Lm.

To study the behavior of the Ising-like domain walls we
consider systems with sizesLx=L, Ly=L+1, with L being
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even. The odd lengthLy forces into the ground-state check-
erboard pattern of vortices a single straight domain wall run-
ning the length of the system in thex̂ direction. This is illus-
trated in Fig. 1sad, where as+d signifies a vortex in the phase
anglesusr id, and as−d signifies the absence of a vortex.

Phase coherence in the FFXY model is most conveniently
studied by considering the dependence of the total free en-
ergy F on the total twistDm applied across the systemfsee
Eq. s5dg. In a phase-coherent ordered state, we expect that
FsDmd varies with the twistDm; in a phase-incoherent disor-
dered state, we expectFsDmd is independent ofDm in the
thermodynamic limit ofL→`. The dependence of the free
energy onDm is readily obtained by usingfluctuating twist
boundary conditions,15 in which one treats the applied twist
Dm as a thermally fluctuating degree of freedom. IfZ is the
partition function for this ensemble, then the probability
PsDmd of finding a state with a particular twistDm is given by

PsDmd =
e−FsDmd/T

Z
, s6d

and so the free energy with respect to a reference twistDm0 is

FsDmd − FsDm0d = − T lnfPsDmd/PsDm0dg. s7d

The probability PsDmd is directly measured within our
fluctuating twist Monte Carlo simulation. We choose the ref-
erence twistDm0 to be the value of the twist that minimizes
the free energyFsDmd. For the gauge choice of Eq.s3d, it is
straightforward to see that the minimizing twist in thex̂ di-
rection is atDx0=0. In our simulations we keep a fixed twist
Dx=0, and consider only the dependence of the free energy
on the varying twistDy, transverse to the Ising-like domain
wall that is introduced in ourL3 sL+1d systemsfsee Fig.
1sadg. In Fig. 2 we show sample results from our simulations
for FsDyd−Fs0d vs Dy at two different values ofT,Tw, for a
system of sizeL=128. We see thatFsDyd has two equal
minima at Dy=0 and p si.e., periodic and antiperiodic
boundary conditionsd. One of these minima corresponds to
states where the domain wall sits at even values of the height
y, while the other corresponds to states where the domain
wall sits at odd values of the heighty. Below the kink-
antikink unbinding transitionTw, the system is in a state of

broken translational symmetry; due to the free energy barrier
between the two minima, states in which the domain wall is
at an even height cannot be reached from states in which the
domain wall is at an odd height. As noted by Korshunov,8

this broken symmetry is restored when phase coherence
transverse to the wall is lost, i.e., whenFsDyd becomes inde-
pendent of Dy, and so the free energy barrier between
Dy=0 andDy=p vanishes. Alternatively viewed, when the
domain wall changes its height by an odd number, the system
acquires an average twist ofp in the ŷ direction. Thus, re-
storing the symmetry of domain-wall translations leads to
phase-angle fluctuations that destroy phase coherence trans-
verse to the direction of the wall.

In our numerical work we will use two convenient mea-
sures of the variation ofFsDmd with Dm. The first is the
helicity modulus,2,14 Ym, which measures the curvature of
FsDmd at its minimum,

YmsLx,Lyd =
Lm

2

LxLy
U ]2F

]Dm
2 U

Dm=0

=
1

LxLy
Ho

i

kV9sfimdl0 −
1

TKFoi

V8sfimdG2L
0
J ,

s8d

wherefim;fmsr id;usr i +m̂d−usr id−Amsr id, V8 and V9 are
the first and second derivatives of the Villain function of Eq.
s4d, andk¯l0 indicates a thermodynamic average in the en-
semble with fixed twistDm=0. A second measure is

DF = Fmax− Fmin = Fsp/2d − Fs0d, s9d

whereFmax andFmin are the maximum and minimum values
of FsDyd, as Dy is varied at fixedDx=0. SinceYm is an
intensive quantity, it should approach a value independent of
system size asL→`. The parameterDF scales as
YsD /Ld2LD in D dimensions, and so forD=2 it also be-
comes independent of system size asL→`.

FIG. 1. Various configurations of the domain wall in a
L3 sL+1d system:sad ground state,sbd finite width step of unit
heightskink-antikink paird, scd isolated kink of unit height,sdd iso-
lated kink of height two. As+d indicates the presence of a vortex in
the XY model, or a chargeqi =1/2 in thedual Coulomb gas; as−d
indicates the absence of a vortex in theXY model, or a charge
qi =−1/2 in the dual CG.x̂ is the horizontal direction, andŷ is the
vertical direction.

FIG. 2. Variation of total free energyF with total twist Dy ap-
plied transverse to the Ising-like domain wall, for two different
temperatures in a system of sizeL=128.
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B. The Coulomb gas

Although our simulations are carried out in theXY vari-
ablesusr id, it is helpful to consider the situation from the
viewpoint of the dual CG model of logarithmically interact-
ing half-integer charges.1,16 For the case of a fixed total twist
Dm, theXY Hamiltonian of Eq.s1d maps onto

HCG = H0 + H1. s10d

H0 is the logarithmic interaction of the charges,

H0 =
1

2
s2pJdo

i,j
qiGsr i − r jdqj , s11d

where qi = ±1/2 are thehalf-integer charges, neutrality is
imposed,oiqi =0, andGsr d is the 2D periodic lattice Cou-
lomb potential1,16 with Gsr d,−lnur u for large 1! ur u!L /2.
H1 arises from the fixed twist boundary condition and is
given by17,18

H1 = VxSDx − Ax
0 +

2ppy

Ly
D + VySDy − Ay

0 −
2ppx

Lx
D ,

s12d

whereVx andVy are Villain functions as in Eq.s4d, but with
couplingsJx=JsLy/Lxd andJy=JsLx/Lyd, respectively, andp
is the total dipole moment,

p = o
i

qir i , s13d

and Ax
0=oxAxsx,y=0d, Ay

0=oyAysx=0,yd. For the gauge
choice of Eq.s3d we have

Ax
0 = 0, Ay

0 = sL + 1dp/2. s14d

For the ground state as illustrated in Fig. 1sad, one has
py=0, and so again it is easy to see from Eq.s12d that the
total ground-state energy is minimized whenDx=0. How-
ever, for this ground state one haspx=L /4, hence the
ground-state energy is minimized whenDy=sL+1dp /2
−p /2=Lp /2. If the location of the domain wall were shifted
by one unit in height, then the ground state would have
px=−L /4, and the energy would be minimized when
Dy=sL+1dp /2+p /2=Lp /2+p. For L even, as we have
required, these two values, modulus 2p, are just equal
to 0 andp.

The helicity modulusYy/J maps3,14,15 onto the inverse
dielectric functionex

−1 of the CG. As noted by Korshunov,8 in
order for the domain wall to move a unit lattice spacing in
height, it must first form a unit step of finite width, ; , must
be even to preserve charge neutralityfsee Fig. 1sbdg. We
denote the left-hand edge of the step as thekink, and the
right-hand edge as theantikink. As the kink and antikink
separate out to infinity, the domain wall moves one unit in
height. As shown by Halsey,19 a corner in a domain wall
carries with it a net charge of ±1/4. The kink, consisting of
two successive corners with equal +1/4 charge, carries a net
charge ofqkink= +1/2; theantikink carries a net charge of
qkink=−1/2. At low temperatures, the logarithmic attraction
between the kink and antikink charges keeps them bound
with a largest separation,maxsTd. At higher temperatures,

entropy wins out over energy, and there is a kink-antikink
unbinding transition atTw, where ,maxsTwd→`. Above
Tw, the kink-antikink unbinding leads to diverging dipole
fluctuations in thex̂ direction, driving ex

−1 sand henceYyd
to zero.

The problem of logarithmically interacting charges in one
dimensions1Dd has been treated by Bulgadaev.20 Koshunov8

has applied these results to the unbinding transition of the
kink-antikink pair along the one-dimensional Ising-like
domain wall. To include the screening effect of charge
excitations in the bulk of the system on either side of the
Ising-like domain wall, we take as the coupling between
kink-antikink pairs separated at a large distance to be the
helicity modulus of the FFXY for an ordinaryL3L system,
YsL ,Ld, in the limit of large enoughL. Applying Bulgada-
ev’s exact result for the unbinding transition temperature, we
conclude

2pYsL,Ldqkink
2

Tw
= 2 or Tw =

p

4
YsL,Ld. s15d

One can reproduce this result using a Kosterlitz-Thouless-
like argument3 as follows. In analogy with Leeet al.,11 we
consider the total free energy to have a single “free”si.e.,
unboundd kink in the domain wallfsee Fig. 1scdg. Fixing the
kink at a given position on the domain wall, its free energy
saveraging over all other fluctuationsd is that of an isolated
+1/2 vortex in a medium with phase stiffnessYsL ,Ld; here
we use Bulgadaev’s result20 that kink-antikink pairs in 1D do
not lead to a renormalization of the kink-antikink interaction,
and so any screening of their interaction is due to charge
excitations in the bulk on either side of the domain wall, and
so accounted for by the largeL value of Y. As L→`,
the leading contribution to this energy isE=pqkink

2 Y ln L.
The entropy of the kink is just that associated with its posi-
tion along the domain wall,S=−ln L. Combining gives
Fkink=E−TS=spY /4−Tdln L, which asL→` gives the in-
stability temperature for the formation of free kinks as
Tw=pY /4, in agreement with Eq.s15d.

III. NUMERICAL RESULTS

A. Helicity modulus

We now present our numerical results. At each tempera-
ture, our simulations consist of typically 108−109 ordinary
MC passes through the entire lattice for the largest system
sizes. In Figs. 3 and 4 we plot the helicity moduliYx and
Yy vs T, as computed by Eq.s8d in an ensemble with fixed
twists Dx=Dy=0. We show an “ordinary” casesno domain
wall at T=0d of size 64364, which is large enough that any
finite-size effects are negligible for the temperatures shown.
In comparison, we also show several “anomalous” cases
spercolating domain wall atT=0d of sizesL3 sL+1d. For the
ordinary case,Yx=Yy, and the bulk transitionswhere theYm

jump discontinuously to zero in the thermodynamic limitd is6

at TKT.0.81J. In comparison, asL increases in the anoma-
lous case,Yx sparallel to the domain walld in Fig. 3 ap-
proaches the value of the ordinary case, and so presumably
vanishes at the sameTKT. However the curves ofYy strans-
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verse to the domain walld in Fig. 4 clearly decrease below
that of the ordinary case and presumably vanish in the ther-
modynamic limit at a lowerTw.

The reduction seen inYy for the L3 sL+1d systems, as
compared to theL3L system, shown in Fig. 4, is due to the
kinks at the Ising-like domain wall. To explicitly see this, we
can consider the helicity modulus at thefinite wave vector,
Yyskxd, defined as the response to a small sinusoidal pertur-
bation in the vector potentialAysr id. If we take

Aysr id → Aysr id + o
kx

dAkx
eikxxi s16d

thenYyskxd is defined by6,21

Yyskxd =
1

LxLy
U ]2F

]dAkx
] dA−kx

U
dAkx=0

. s17d

In view of the discussion following Eq.s5d, equating the
application of a uniform twistDm to the addition of a con-
stant to the gauge fieldAm, the helicity modulusYy of Eq. s8d
can also be viewed as thezero wave vectorhelicity
Yyskx=0d. In the CG representation,Yyskxd becomes the
usual formula for the wave-vector-dependent inverse dielec-
tric function,14,15

Yyskxd/J = 1 −
4p2J

T

kqskxdqs− kxdl
LxLykx

2 , s18d

whereqskd=oie
ik·r iqi is the Fourier transform of the charge

distribution.
Unlike Yy of Eq. s8d, which measures the response to

a uniform twist applied at the boundaries,Yyskxd measures
the response to a spatially varying twist applied throughout
the bulk of the system. For a homogeneous system with
periodic boundary conditions, one in general expects
Yy=limkx→0Yyskxd, since the spatially varying twist becomes
uniform askx→0, anddAkx

→Dy/Ly. For free boundary con-
ditions, however, where the phase angleusx,Lyd is not
coupled to the phase angleusx,0d, this equality does not
hold. For free boundary conditions, the absence of any con-
straint fsuch as in Eq.s5dg relatingusx,Lyd to usx,0d means
that the phase angles are free to untwist any additive constant
to the gauge field,Aysr id→Aysr id+Dy/Ly, by choosing
usx,y+1d−usx,yd=Dy/Ly; hence, if one computesYy by Eq.
s8d in a free boundary ensemble, one necessarily hasYy=0 at
any temperature. For the spatially varying twist of Eq.s16d,
however, no such transformation is possible since the per-
turbing twist is a strictly transverse vector function, while the
phase angle differences give a strictly longitudinal vector
function. In this case one finds that limkx→0Yyskxd has the
same value, asL→`, that one has for the system with peri-
odic boundary conditions.

We expect a similar effect to be true in our present case.
The kink-antikink pairs confined to the one-dimensional
Ising-like domain wall can be viewed as a relaxation of the
boundary condition. They can unwind, or soften, the energy
of a uniform twist Dy applied at the boundary, but cannot
unwind a spatially varying twistdAkx

applied throughout the
bulk of the system. We therefore expect that, asL→`,
limkx→0Yyskxd will equal the value ofYy obtained for an
ordinaryL3L system, representing the stiffness of the bulk
of the system on either side of the domain wall;Yy, however,
will be a lower value including effects due to the polarization
of the kink-antikink pairs localized to the domain wall.

In Fig. 5 we plot, at several different temperatures around
Tw, Yyskxd for finite kx for L3 sL+1d systems with sizes

FIG. 3. Helicity modulusYx vs T for different system sizes
Lx3Ly. As L→`, YxsL ,L+1d and YxsL ,Ld approach the same
curve.

FIG. 4. Helicity modulusYy vs T for different system sizes
Lx3Ly. As L→`, YysL ,L+1d vanishes at a temperature lower than
whereYysL ,Ld vanishes. The intersection of the dashed line with
YysL ,Ld indicates the kink-antikink unbinding temperature
Tw.0.71J predicted by Eq.s15d.

FIG. 5. Wave-vector-dependent helicity modulusYyskxd vs Lkx

at several different temperaturesT for system sizesL3 sL+1d, with
L=64 ssolid symbolsd andL=128 sopen symbolsd. The data for the
different L collapse to a common curve at eachT.
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L=64 and 128. When we plot the results versus the scaled
axis ofLkx, we see that the data for the two different system
sizes collapse to essentially a common curve,usLkxd, at each
temperature. As L→`, such scaling implies that
limkx→0flimL→`Yyskxdg=limk→`uskd is different from Yy,
just as we have argued. We may estimate limk→`uskd by
taking the maximum value ofYyskxd for each system sizeL.
In Fig. 6 we plot Yy

max;maxkx
fYyskxdg versus 1/L for the

same temperatures as shown in Fig. 5. We give results for
L=32, 64, and 128. At 1/L=0 we plot the value ofYysL ,Ld
for L=64, representing the largeL limit for the helicity
modulus of the ordinary system without the Ising domain
wall. We see that the values ofYy

max extrapolate perfectly to
YysL ,Ld as 1/L→0. This confirms the following conclusion.
As L→` in an L3 sL+1d system, the finite wave-vector
helicity Yyskxd is equal to the corresponding helicity modulus
of an ordinaryL3L system forall finite values ofkx; this
measures the stiffness of the bulk of the system on either side
of the Ising domain wall, and it is unaffected by the kinks on
the wall. However the zero wave-vector responseYy to a
uniform twist Dy, shown in Fig. 4, is softened and aboveTw
reduced to zero—by the polarization of the kinks on the
domain wall.

B. Finite-size dependence

Returning to Fig. 4, we have indicated the kink-antikink
unbinding transition temperatureTw, as predicted in Eq.s15d,
by the intersection of the line 4T/pJ with the helicity modu-
lus of the ordinaryL3L system. This gives an estimate of
Tw.0.71J. This value occurs noticeably above the point
where many of the curvesYysL ,L+1d appear to cross. Such
a crossing point, if remaining constant asL increases, is gen-
erally taken as an estimate for the phase transition in a 2D
XY system. To explain the difference between this crossing
point at,0.60J and the above estimateTw.0.71J, we need
to examine the finite-size dependence ofYysL ,L+1d more
carefully.

To get the most accurate results, we have found it better to
work in the fluctuating twist ensemble and compute the
phase-coherence parameterDF of Eq. s9d, rather than work
with periodic boundary conditions and measureYy. In Fig. 7
we plot our results forDF versus system size 1/L for various
temperaturesT above and belowTw. We useL3 sL+1d sys-

tems withL ranging from 32 up to 512. We note that at low
T, the behavior ofDF is nonmonotonic; as L increases, the
system first softens with a decreasingDF, but then stiffens
again asDF reaches a minimum and then increases. We de-
note the system size at this minimum byjk. Since the system
becomes stiffer on length scalesL.jk, we assume thatjk
determines the size of the largest kink-antikink pairs on the
domain wall. At higherT, the minimum inDF disappears,
and DF continues to decrease asL increases. The tempera-
ture that separates the two behaviors is somewhere between
0.68J and 0.74J, in good agreement with the result
Tw.0.71J from Fig. 4, based on the theoretical prediction of
Eq. s15d.

As a further check on our results, we have also directly
simulated a one-dimensions1Dd neutral system of logarith-
mically interacting chargesqkink= ±1/2. The 1Dinteraction
potential is taken as the 2DL3L lattice Coulomb potential,
as in Eq.s11d, but with the height separation fixed aty=0.
We use an interaction coupling constant of 2pYysL ,Ld, with
YysL ,Ld obtained from our simulations of the ordinary
L3L 2D FFXYmodel forL=64, in order to model as closely
as possible the interaction between kinks on the domain wall
in the trueL3 sL+1dFFXY model system. Within this 1D
simulation we measure the normalized histogram of the total
dipole moment,Pspxd, and use it to construct22 what would
be the free energyFsDyd of the correspondingL3 sL+1d 2D
FFXY system,

FsDyd = − T lnFo
px

Pspxde−VyfDy−Ay
0−s2ppx/Ldg/TG + const,

s19d

whereVy is the Villain function as in Eq.s12d, and “const” is
a constant term independent ofDy.

In Fig. 8 we plot the resulting DF=Fsp /2d
−Fs0d versus 1/L for the same temperatures and sizesL as
in Fig. 7. The agreement between Figs. 7 and 8 is not exact,
since the coupling between kinks is only equal to 2pYysL ,Ld

FIG. 6. Yy
max;maxkx

fYyskxdg vs 1/L at several different tem-
peraturesT. The values at 1/L=0 correspond toYy for an ordinary
64364 system. Solid lines are fits to a quadratic polynomial.

FIG. 7. DF of Eq. s9d vs 1/L at various temperatures for the 2D
FFXY model of sizeL3 sL+1d.
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on large length scales; the true screening of the kink inter-
action due to charge excitations in the bulk on either side of
the domain wall is length scale dependent. Moreover, the
domain wall in the 2D FFXY model is not a strictly straight
one-dimensional line; the roughness of the domain wallssee
the following sectiond means that height fluctuations can add
to the distance of separation between kinks. Nevertheless,
the agreement is qualitatively very good, indicating again
that it is the polarization of kink-antikink pairs along the
Ising domain wall that is responsible for the decrease in the
phase stiffness transverse to the domain wall.

One evident feature of both Figs. 7 and 8 is the very large
finite-size effect. The asymptotic behavior ofDF only sets in
at quite large length scales. Equivalently, the correlation
length of the kink-antikink pairs,jk, grows large well below
Tw.0.71J. Fitting the data of Fig. 7 to a quadratic in lnL,
and determiningjk from the minima of these fitted curves,
we plot the resultingjk versusT in Fig. 9. The rapidly grow-
ing jk means that it is difficult to get a very precise estimate
of Tw directly from the data of Fig. 7, without going to pro-
hibitively large system sizesL@512. We believe that this is
also the reason that Leeet al.11 report a lower value23 of
T/J=2ps0.09±0.01d=0.57±0.06 for the “roughening transi-
tion” temperature in their dual 2D Coulomb gas. The simu-

lations of Leeet al. are on a lattice of sizeL=64. From Fig.
9 we see thatjk,32 atT/J,0.58, hence kinks already look
unbound above this temperature for such a small system size.
The large values ofjk can also be compared to other length
scales in the system. The correlation length of the Ising-like
order parameter,jI, gives the typical size of an Ising-like
domain excitation in an ordinaryL3L FFXY model.
From Ref. 6ssee Fig. 15d we find thatjI is quite small below
Tw.0.71J, in particularjI ,2.5 for T,0.77J. Thus we ex-
pect that kink-antikink pairs on the domain wall enclosing a
typical thermally excited Ising-like domain are always effec-
tively unbound. The energetics of kink-antikink unbinding
will only effect the morphology of domains that aremuch
larger than those due to typical thermal excitations.

C. Roughening

Finally, we consider the roughness of the domain wall. As
noted by Koshunov,8 an isolated step on a domain wall of
height 2 fsee Fig. 1sddg carries no net charge, each corner
giving opposite 1/4 charges that therefore cancel. Such iso-
lated height of 2 steps therefore cost finite energy, and should
roughen the domain wall at any finite temperature. To verify
this we have explicitly measured the domain-wall width
squared,

W2 =
1

Ns
o

s

ksyssd − ȳd2l, s20d

where s is an index that counts horizontal length traveled
along the domain wallss=x if there are no overhangsd, yssd
is the height of the domain wall at indexs, ȳ is the average
height of the domain wall in the particular configuration, and
Ns is the number of horizontal links in the domain wall
sNs=L if there are no overhangsd. To avoid problems with
periodic boundary conditions, we always measure the do-
main wall height as relative to some initial starting position.
In Fig. 10 we plotW2 vs L for various temperatures. The
linear growth inW2 asL increases indicates that the domain
wall is rough for all temperatures shown, includingT,Tw.

FIG. 8. DF of Eq. s9d vs 1/L at various temperatures as esti-
mated from the dipole histogram of a 1D interacting kink model
ssee textd.

FIG. 9. Kink-antikink correlation lengthjk vs T, obtained from
the data of Fig. 7.

FIG. 10. Domain-wall width squared,W2, vs L for several dif-
ferentT. Straight lines are linear fits, showing rough domain walls
at all T, even belowTw.0.71J. The inset shows the slopes of the
curves,dW2/dL, vs T.
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The domain-wall diffusion constant,dW2/dL, shows no ob-
servable singularity atTw.0.71J ssee the inset to Fig. 10d.

IV. DISCUSSION

Our numerical results demonstrate the existence of the
unbinding transition for kink-antikink pairs along the domain
wall of Ising-like excitations in the 2D FFXYmodel and that
the behavior of this transition is in good agreement with the
theoretical predictions of Korshunov.8 We show that domain
walls are rough at all temperatures, and therefore argue that
the “roughening transition” claimed by Lee and
co-workers10,11 is really the kink-antikink unbinding transi-
tion. We show that the effects of kink-antikink pairs are not
readily apparent for Ising-like domains, such as are typically
present due to thermal excitation; because of the large length
jk, such effects are important only for much larger domains.

One of Korshunov’s main motivations for investigating
the kink-antikink unbinding transition was to argue that such
a transition necessarily implies the existence of two separate
bulk transitions,TKT,TI. We now present our own thoughts
on this issue. In the original paper by Teitel and
Jayaprakash,2 two possibilities were considered,TKT,TI and
TKT=TI. In discussing the first case, Teitel and Jayaprakash
presented the following scenario. In terms of the dual CG
model, the helicity modulusY gets reduced from itsT=0
value by fluctuations that produce dipole moments. If Ising
domains of typical sizejI carried a total dipole moment pro-
portional to their size, they would driveY→0 continuously,
due to the divergingjI as T→TI from below. However, in
addition to these domain excitations, there are also pair ex-
citations. The original Kosterlitz-Thouless instability criteria
would imply that pairs unbind onceY falls below the critical
value YsTd=2T/p, which must happen at someTKT below
TI. However, if one computes domain energies atT=0 sand
presumably the same holds for domain free energies at low
Td, one finds that it is only the domains withvanishingtotal
dipole moment that have energies which scale with the pe-
rimeter; i.e., the only domains which are “Ising-like” are

those which carry no dipole moment and so cannot give any
reduction inY. Fortunately, onceT increases aboveTw, kink-
antikink pairs on the boundary of the domain are free to
unbind, and the Ising domains can now acquire large dipole
moments at no cost in free energy. The scenario of Teitel and
Jayaprakash is now restored. This conclusion is in complete
agreement with the numerical work of Olsson,5,6 who finds
two distinct transitions atTKT,TI, and argues that the non-
Ising-like critical behavior claimed by some7 at TI is in fact
an artifact of finite size effects.

The kink-antikink unbinding transition may also have im-
plications for the nonequilibrium steady state behavior of the
system when the vortices are driven by a uniform force, such
as is the case for a fully frustrated Josephson junction array
in an applied uniform dc currentI. SinceI couples linearly to
the total dipole moment of a domainp, the force can lead to
an instability24 in domain growth, provided the free energy
of exciting the domain scales less than linearly withp. For
T,Tw, the binding of kinks to antikinks prevents large di-
pole moments from building up on domains. The Ising-like
domains, whose free energy scales like the domain length,,
are only those domains whose total dipole moment vanishes,
and, hence, these domains remain stable, and the Ising-like
order should persist at small drives. ForT.Tw, kink-
antikink pairs can unbind, resulting in domains whose dipole
moment may scale at least proportional to their length,. In
this case, when the current exceeds an amount proportional
to the Ising domain surface tension, domains will become
unstable to growth and the Ising-like order will be destroyed.
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