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Vortex dynamics for two-dimensional XY models
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Two-dimensional XY models with resistively shunted junctiofRS) dynamics and time dependent
Ginzburg-LandayTDGL) dynamics are simulated and it is verified that the vortex response is well described
by the Minnhagen phenomenology for both types of dynamics. Evidence is presented supporting that the
dynamical critical exponertt in the low-temperature phase is given by the scaling predi¢gapressed in
terms of the Coulomb gas temperat(fe® and the vortex renormalization given by the dielectric constant
‘€) z=1/eT®—2=2 both for RSJ and TDGL and that the nonlinédrexponent is given bya=z+1 in the
low-temperature phase. The results are discussed and compared with the results of other recent papers and the
importance of the boundary conditions is emphasiz868163-1829)05317-5

I. INTRODUCTION present and furthermore that these free vortices can be de-
scribed by a conventional dynamics with-2 >
Superconducting films and two-dimensioif2D) Joseph- In this paper we present extensive simulations of’22D

son junction arrays as well &$e films undergo Kosterlitz- models with RSJ as well as TDGL dynamics using an un-
Thouless (KT) type transitions from the superconduct- conventional boundary condition. This enables us to obtain
ing/superfluid to the normal staté. The KT transition is more information on the vortex dynamics for these models.
driven by thermally created vortex-antivortex pairs which The situation is roughly the following: The MP form of
start to unbind at the transitidriThis means that some domi- the dynamical response gives a good description of the 2D
nant characteristic features of the physics close to the transkY models with TDGL dynamicéthe Coulomb gas model
tion are associated with vortex pair fluctuations. The greawith Langevin dynamic$?® and experiments on 2D
current interest in 2D vortex fluctuations stems from the facsuperconductor§®4In the present paper we show that it
that they are also present in high-superconductors, not also gives a good description of 2BY models with RSJ
only in the case of thin films, but also in 3D samples justdynamics. The dynamical exponerfor the lattice Coulomb
above the transitiof It is therefore of interest to understand gas with Monte Carlo dynamics has from simulations been
the properties associated with these thermally created vortinferred to have the scaling value=ags1.1* In the
ces. Whereas there is a fairly good consensus on the statizesent paper we verify this result for t¥y models with
properties associated with vortex pair fluctuatidribe dy-  both RSJ and TDGL dynamics. This is seemingly in contra-
namical aspects are less clear and some features are stliction to the results in Ref. 8 that the 20Y models with
controversial. RSJ and TDGL dynamics behave differently and appear to
The knowledge of the dynamical properties of vortexhave differentz values. The nonlineakV exponenta has
fluctuations mainly comes from experiments on superconbeen found to have the scaling valag.,for the Coulomb
ducting films and“He films?® and from various model gas with Langevin dynami¢$and the lattice Coulomb gas
simulations’® The theoretical attempts are so far on a rathemith Monte Carlo dynamics* However, contradictory re-
phenomenological levéf° with few exceptions. The more  sults have been found for theY model with RSJ dynamics,
explicit knowledge derives from several kinds of simula-e.g., a=apyns in Ref. 9 anda=ag,e in Ref. 12. In the
tions: XY models with time dependent Ginzburg-Landaupresent paper we find support far ag.,e for the 2D XY
(TDGL) dynamics] XY models with resistively shunted Jo- model with RSJ dynamics.
sephson junctioiRSJ dynamics® the Coulomb gas model The picture emerging from our perspective is a generic
with Langevin dynamicd® and the lattice Coulomb gas vortex response well described by the MP form of the fre-
model with Monte Carlo dynamics. There exist two phe- guency response, the scaling exponagt,. and the corre-
nomenological descriptions: the Ambegaokar-Halperinsponding dynamical exponent ag.,— 1. According to our
Nelson-Siggia AHNS) descriptiof and the Minnhagen phe- view this generic vortex response describes both Coulomb
nomenology (MP).2 There are, likewise, two distinct gas models and 2XY models and is insensitive to the de-
proposals for the nonlined exponenta, i.e., aayns (Ref.  tailed type of the dynamics be it Coulomb gas Langevin-,
4) and ag.,e (Ref. 12 with a corresponding proposal for a Monte Carlo-, TDGL-, or RSJ-type.
critical dynamical exponent=ag.s—1 (Ref. 12 in the The content of the present paper is the following: In Sec.
low-temperature phase. It has also been argued that the noh-we describe theéXY-type models and the relevant correla-
linear IV exponent with the valueg.,eapplies to an inter- tion and response functions, as well as the relation to the
mediate current range whereag,ys should be recovered in vortex and Coulomb gas degrees of freedom. We also dis-
the true small-current limit. This argument rests on the as- cuss the validity of linear response and the relation between
sumption that for any finite current there are free vorticegshe complex impedance and the dielectric function of the
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Coulomb gas. In Sec. Ill the dynamical equations are dewherep=1 corresponds to the usudlY model. The practi-
scribed and the boundary condition is introduced and diseal point with such a generalization is that the vortex density
cussed. Sections IV and V contain our simulation resultsincreases with increasing.'® Consequently the vortex re-
Sec. IV the equilibrium ones and Sec. V the result when thesponse is sometimes easier to extract from simulations for a
system is driven by an external current. Finally in Sec. VI wep value larger than 1.

summarize our results and make some final remarks. The Boltzmann factor for a particular configuration is
given bye xv/T whereT is the temperature in units dd;
Il. XY MODEL ;i%].e(;:rom this all thermodynamic properties can be ob-

On a phenomenological level, a 2D superconduc- The mapping between th8Y model and the Coulomb
tor/superfluid can be described by an order paramge)y gas representation is as follo#sThe effective temperature
=|y(r)|e'?"), where| y(r)|? is proportional to the superfluid variable for the Coulomb gas charges is given BY®
density andv 6(r) is proportional to the superfluid velocify. =T/[27J(U")], where T is the temperature for th&XY
The energy associated with the order parameter is the kinetimodel, (---) denotes a thermal average, and”
energy of the current and consequently the energy is propor= 3°U/d¢?. The supercurrent through a link is given by
tional to [d?r[V 6(r)]%/2.2 A positive (negative vortex cen-  JU’=JdU/d¢. The Coulomb gas chargg, corresponding
tered at a certain point is associated with the topologicato an elementary plaquette of the square lattiée given by
excitation characterized by that the line integf86(r)-dl  the directed suntcorresponding to a line integjabver the
of an arbitrary small closed loop around the point is equal tdour links (ij) making up the plaquetté
27(—2). There is a precise mapping between the vortices

of a 2D superconductor and 2D Coulomb gas chafdgiace _ TCC ML

our interest in the present paper is the dynamical effects of n'_T ier

the thermal vortex fluctuations, we will describe our results

in the language of 2D Coulomb gas charges. The correlation functiorG(k,t) is a key quantity and is de-

The XY-type models in a broad sense are models reprefined by
senting the continuum order parametgfr)=|y(r)|e' " 1
put on a lattice. Let us for convenience choose a square A _ — /L 2
lattice. The discretized version is thefj=|y;|e'%, where Ck=g(FkOF(=k0)
the indexj denotes the lattice points. Let us simplify further
by neglecting the variations of the magnitude of the ordemvhereF (k,t) is the 1D Fourier transform:
parameter and takey;|=|y| to be a constant. The dis-

cretized version of the energy then takes the form Ek)=> Fr(t)ekm
m
Hyy=J>, U(¢ij=6,—6)), (1)  mlabels the rows of the lattice, and finally
=
where Je|y|? is termed theXY coupling constant and the Fn(=J3 2 U'[¢;(D)],

sum is over nearest-neighbor pairs. The lattice constant is {if)em

taken to be unity so thap;;= ¢, — 6; corresponds t& ¢ (in  where the summation is over all the links making up the row
the direction fronj toi). The funct|onU(¢) has to be equal m. The Fourier transformation of the charge density correla-
to ¢2/2 for small ¢ in order to yield the correct continuum tion functioné(k,t) is related toé(k,t) by

limit and in additionU(¢) has to be a periodic function of

21 since the phase angle for each lattice point is only . Zg(k,t)
defined upto a multiple of 2. A possible choice fot (¢) is Gkt)= o e ()
then

Linear-response theory then linkgk,t) with the dielectric

U(¢)=1- cos¢ response function &(k,») by’

and with this choice the model is the usual XIY model or 1 1 2 Tce
the planar rotor model. This particular interaction would, Rd - - T f dtsinwtG(k,t),
e.g., arise if each lattice point was a small superconducting e(k,w) e(k,O) T?

island which was Josephson coupled to its nearest neighbors, 4
and the system is called a Josephson junction a3ag.

We will use this choice of the interaction in the present pa- 1 zmoTCG
per. However, from the point of view of vortex fluctuations Im| = | f dtcoswtG(k,t),  (5)
any U(¢) fulfilling the necessary requirements stipulated e(k,w)
above is a valid choice. A possible generalization is where
()= [1 2’ "5” %) L 2 ko ®)
=—|1l-co =l = =1- ,0).
Py 2 e(k,0 T?
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The quantities 3(0,w) and G(0;t) will be of particular in- TN,
terest in the present investigation.

The thermodynamic KT transition is characterized by where z is the dynamical exponent. In addition we have a

short distance scak i.e., the lattice constant or the size of a
Coulomb gas particle and a nondiverging characteristic time
) 1 1 ; > X

lim = ==>0 scaler,, i.e., 7,%1°/D whereD is a vortex or Coulomb
k—o€e(k,0) € particle diffusion constant arids some nondiverging length
scale likel =a or | = 1/\/n wheren is the density of Coulomb
gas particles. Let us choose 0 andr =\ so that

below the transition and

lim 1 o G(r,0)xrf(1,0a/r,»)
k-0e(k,0) and make thed hocscaling assumption that
above. Precisely at the transition LignO 1/e(k,0)TCC jumps limf(1,0a/r,»)=1f(1,0,05)=const,

r—o

from the universal value #T°®=4 to zero!”'® The equal-
time correlations fall off like power laws with distance below where const0 and # +%. This requiresa= — 1/eT®C+2
the transition and exponentially abovezor example, the sinceG(r,0)xcr ~(1<7°9-21 \e then also have that
correlation functionG(r,t=0) falls off like

G(r O)mr*(l/;TCG*Z) R0 f erG(r,t):)\f(UZTCGHZJ d?rf (r/N t/ralr, 7, /t).

below the transition temperature. The fact that the correlaNow we choose =t*? so that
tions decay algebraically with distance reflects that the whole
low-temperature phase is quasicritical.

As explained in the previous section one motivation for
the present paper is the question of t_he gent_erallty of the Mlg1nd assume that
form for the dynamical response, which is giverf by

f der(r,t)=t[‘(1’~ETCG)+2]’Zf d2rf (r/t¥2, 1801, 7, /t)

limf(r/t*¥2 1a/r,7,/t)=1(0,1a/r,00=F(alr),
(8) t—o
WhereT(x) is a well-behaved function so that

1 1

Re - - =
| e(k=0,0) €(0,0

-
| e(k=0,0)

The characteristic frequenay, vanishes as the KT transi- for larget. This is consistent witlf d’rG(r,t)= L&t provided
tion is approached from above and belbWhe idea behind

the MP form is that it describes the response due to the S 1 0 (10)
bound pairs. Consequently, it is expected to have the correct % =l

leading small-frequency behavior below the KT transition

whereas it can only be approximately correct above because The dynamical exponert given by Eq.(10) has been
of the presence of free vortices which always dominates thinferred through simulations of the lattice Coulomb gas with
response for small enough frequencies and gives a Drud@donte Carlo dynamics! In the present paper we conclude
like response in this limit.In the present paper we focus on that the same is true for théY models both with RSJ and
the low-temperature phase. In this case the leading small TDGL dynamics.

behavior of Eqs(8) and(9) reflects a 1t/ decay for large of It has been argued by Dors%’yusing scaling analysis,
the functionG(k=0).2? One may also observe that £§)  that for a 2D superconductor the exponerit the nonlinear
leads to a logarithmic divergence of the real part of the condV characteristicd/«1? has the value=z+1 precisely at

2 woghol/w ~ _
——— 9) f erG(r,t)oct[’(l’ETCG”zl’zf d2rF(alr)

Im >
€T w —wo

ductivity: o(w)~ — o Im[L/e(k=0,0)]~— In o for small thg KT trg\nsitioq. It has further been suggested by
, which is compatible with standard scaling argument bmenhageﬁ that since the whole low-temperature phase is
Fisher and Fisher. Fisher. and Huse in Ref299. quasicritical the same relation should apply throughout the

low-temperature phase. This together with ELp) leads to

- ~[(1/e1€9-2] e
The two featuresG(r,t=0)oxr and G(k the prediction

=0,t)=/d?rG(r,t)=1/t can be turned into an argument for
the dynamical critical index in the following way'? We 1
assume tha&(r,t) must be of the form a=aggeEz+ 1=

€TCC

1. (12)

G(r,t)yccAN*f(r/Nt/7m,alr,7,/1), . .
(1) ( 7 7alt) The nonlinearlV exponenta=ag.,e in Eg. (11) has been

where\ is the correlation length or screening length whichinferred through simulations for the Coulomb gas model
diverges in the low-temperature phaseis the correspond- with Langevin dynamic® and the lattice Coulomb gas
ing diverging relaxation time so that model with Monte Carlo dynamic’s.
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The response to an imposed current is for a 2D supercorso that the static response to a uniform static current below

ductor given by the complex impedanZéw):22

E(w)=Z(w)j(w),

the KT transition is nonlinear. However, for any finite fre-
quency the response is linear to the lowest order. One also

notes that in the limit of high frequencyildé(k,w) van-

where E(w) is the frequency dependent electric field andishes andZ in Eq. (16) reduces taZ(>)=1, which means
j(w) is the current density. Or equivalently for a quadraticthat the response in this limit is given by the resistive shunt
sampleV(w)=Z(w)!(®), whereV is the voltage across the in the RSJ model. For smaller frequencies the response is

superconductor in some direction ahis the total current in
the same direction. The linear-response funciort(w) is
related to the Coulomb gas linear-response functicr{kL/
=0,0) by

Po

Z Y ) ——,
() iwe(k=0,0)

12

wherep, is the density of superconducting electrons which
for an XY model is given byJ(U”). This means that the
effect on the vortex fluctuations of an imposed current

given by 1E(k=0,w). For smallw this is the dominant con-

tribution.

given by the vortex fluctuatioZ(w)=iwe(0,0)/py as al-
ready stated in Eq.12).

IlI. DYNAMICAL EQUATIONS AND BOUNDARY
CONDITIONS

Simulations by necessity involve lattices with a finite lin-
ear dimensiorL from which the results for the thermody-
namic limit L—o have to be extracted. This means that in
practice the choice of boundary condition is esseftidlhe

. most commonly used boundary condition in order to extract
Sthe thermodynamic limit for theXY models is periodic

boundary condition$PBC) imposed on the phase anglés
However, as discussed in Ref. 16, the PBC for the phase

It is instructive to consider the linear response 10 an iM-ngles leads to a nonperiodic boundary condition for the vor-

posed current directly in the case of tk&¢ model with RSJ
dynamics. Let us consider a quadratic lattice andilgt, be

a link at positionr parallel to thex axis and denote the

difference in phase angle by;;=V,6(r); when the cou-
pling to the electromagnetic field is included, denotes the

tex interaction. The boundary condition for the phase angles
which corresponds to a periodic vortex interaction is instead
the fluctuating twist boundary conditiq®TBC).1® The dy-

namics we are investigating in the present paper are linked to
the vortex fluctuations and consequently the natural bound-

gauge invariant phase difference. The supercurrent throughry condition is PBC for the vortices. This is the commonly
the link at timet is JU'[V,6(r,t) ] and the normal currentis used boundary condition for simulations of the lattice Cou-
proportional to—V,6(r,t) where the dot denotes the time lomb gas with Monte Carlo dynamitsand the continuum

derivative. Thus the total current(r,t) through the link is

i (rt)=—V,0(r,t)+JU'[V,6(r,t)] (13)

Coulomb gas with Langevin dynamit$Thus the important
point in the present context is th&BC for the vortices
meansFTBC for the phase anglehe FTBC for the phase
angles has so far been used in connection with Monte Carlo

in some convenient unit system. The voltage in the RSjmylations'® In the present paper we extend the use of these
model is proportional to the normal current so we can defingoundary conditions toXY models with RSJ and TDGL
the response function corresponding to the complex impedjynamics?* Of course the boundary condition should not

ance aZ(r—r’,t—t')=P(r—r’,t—t’), where

HVx0(r,1))

Pr—r't-t')=—- ——— :
diy(r',t") =0

14

It is shown in the Appendix that the Fourier transfornas
given by

-1
A . Po
Pk,w)=|iw+ = , 15
(k,w) (K.o) (15
wherepy=J(U") so that
-1
A 1
I(k,w)=| 1+ — =0 (16)
o e(k,w)

This means that the response to a uniform time varying cur-

rent is given byZ(w)=Z(0,0). Below the KT transition we
have

=00

lim lim=
w—0k—0€(K,w)

matter in the limitL—oc. However, we in the present paper
find that by using FTBC for the phase angles we are able to
extract more information from our finite simulations.

In this section, we briefly review the dynamical equations
of motion for RSJ and TDGL in the case of PBC for the
phase angles. Then we construct the equations of motion for
FTBC starting from total current conservation and the con-
dition that the equations of motion should lead to the correct
equilibrium distribution. We focus on the ordinaXyY
model, which corresponds =1 case in the previous sec-
tion, but the extension to a genemals straightforward.

We begin with anL XL array of the resistively shunted
junctions with PBC in both directions. In the RSJ dynamics
of 2D XY model the net current from siteo sitej is written
as the sum of the supercurrent, the normal resistive current,
and the thermal noise current:

S Vi
|ij=|cS|r\(¢ij=0i—¢9j)+T+F

ijs
wherei.=2e J/% is the critical current of the single junction,
Vj; is the potential difference across the junctionis the
shunt resistance, and the phase angjesre periodic in both
directions @;= 6, , .x= 6;+y). The thermal noise currei;
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at temperatureT is required to satisfy(I';j(t))=0 and  =[i(r,t),i,(r,t)] is the total current density at pointand
(Tij (O (0)) = (2kg T/r) 8(t) (8 8 — 8 6j) - The current-  the integral is over the whole sample. This condition can also
conservation law at each site, together with the Josephsase expressed as

relationd(6,— 0;)/dt=2eV;; /#, allows us to write the equa-

tions of motion in the form Vi e .
=7 SiN(0;— 0;—Ay) = 7a (23)
. ro L "
0=~ 2,: Gij Ek: [Sin(6; = 00 + 7], (A7) (and the similar equation for thedirection), where the sum-

. L . mationZ . is over all nearest-neighboring pairsrdirec-
where the primed summation is over four nearest neighbors () ¢ gp

of j, Gj; is the lattice Green function on the square latticellON: Vx Is the v_oltage drop over the sample, ang denotes
with PBC, 7;. is the dimensionless thermal noise currentthe thermal noise current. This follows because the left-hand
defined byn; =T /i, and the unit of time i%/2eri.. The side is recognized as the normal current whereas the right-

thermal noise current satisfiésy;; (t))=0 and hand side is the negative of the sum of the supercurrent and
the noise current. As discussed in connection with @8)

(7i; (1) 7 (0)) = 2T (8 81 — 61 Oji) A(1), (18  the voltage is by the Josephson relation proportional to

whereT is in units of J/kg. Vé(r,t). For the voltage across the sample this means that

In the TDGL dynamics with PBC, on the other hand, thelSeé€ Ed(21)]

equations of motion are given by 26

dei(t) IH Ax==7 Ve (24
Tar - Lgg T

90 because the phase angles are by construction subject to peri-
whereT is a dimensionless constant which determines th@dic boundary conditions. Thus from Ed&3) and(24), we
time scale of relaxationH=—JZ;;,cos@—6) is the obtain the equations of motion for the twist variables:
Hamiltonian of the usuaKY model, andé, is periodic in

both directions. The thermal noise tel(t) is assumed to da, 1

f

satisfy(I';(t))=0 and(T';(t)T;(0)) = 24 kg T 8;; &(t). After F T % SIN(6;— ;= A,) + 7, (29
rescaling the time and the temperature in unit&dfJ and
J/kg, respectively, the equations of motion for TDGL dy- dA 1
namics are written as —y_ - z sin(6,— 6,—A,)+ 7, , (26)
dt 1275, Py
,=—> 'sin(6,—6)+n, (19  where we have again writtenin units of #/2eri.. Next a

! noise correlation consistent with the equilibrium condition

where the thermal noise term;=T";/T'J satisfies(»;(t)) has to be found. To this end we make the ansatz of a standard
=0 and white-noise correlation{ 7 (1) 77AX(0)> =( my(t) 77Ay(0)>
B =0, 6(t) and determine the appropna&é in the following
{mi(1)7;(0))=2T5; 8(1). (20 way: The equations of motion for the phase variables in
In numerical simulations for PBC, we use E¢E7) and(19)  FTBC are written as
for RSJ and TDGL dynamics, respectively, with the corre-
sponding thermal noises satisfying E¢58) and (20). Sk P
Next we consider the fluctuating twist boundary condition 0i=hy EJ: Ek: Gij 7 @7
FTBC. In this case a variabl&=(A,,A,) is introduced and .
the phase difference;; on the bond i) is changed int¥ with
0= 01y 4, @D hi=—2 G;X ' sin(6,— 6—Aje) (28)
wherer;;=r;—r; is a unit vector from sité to j, and the ! k
phase angles are period:= ¢, , 3= 6; ;. In the study of  and
equilibrium behaviors for FTBC using MC simulations, it is
sufficient to know the Hamiltonian of the syst&m (nij(t)nk,(0)>=az( SikOj1 — i Ojk) &(1),

where 0?=2T [see Eq.(18)]. From the full equations of
H=-J2 cod6,—6;—r;-A). (22) " motion for RSJ model in FTBEEQs. (25)—(27)], we arrive
o <'_J> at the Fokker-Planck equatich:
In dynamical simulations, on the other hand, we must also
have equations of motion for the new variablgsandA, in W
addition to the equations of motion for phase varialfles ot
The physical situation we have in mind is a sample where
no current passes through the boundary. For the RSJ model, 1 PW 1 PW  PW
which has local current conservation, this implies the total + =02, Gij—=7+ ai(—2+ —2>
current conservation conditiofidr2i(r,t)=0, wherei(r,t) 2797 10696 277 gA% 9A]

_y a J a
=2 ﬁ_ei(hiw)_aTx(th)_&Ty(hyW)
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where W=W({6;},A,,A;t) is the probability distribution
function and

1
hye=— sin(6;— 6;—A,),

= “E) (60— 6;—Ay)
and the similar equation foh,. The stationary solution,
which satisfiessW/9t=0, is of the correct formw=e™#H
with the Hamiltonian given by Eq22) provided
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vortex velocity. If there areN, moving vortices, then we

obtainA=27(N, /L?)(v)=2m(j,), which leads to the rela-
tion given by Eq.(24):

2e

Ax: - HVX y
whereV, is the voltage drop across the sampleidirection
(we obtain the similar equation fak,).

So far we have considered the situation when the total

Bo? current in the sample is zero, which corresponds to no cur-
—=pBT=1, (29 rent passing over the boundary. Let us now consider the case
2 when the total current is a constant dc currgptin the x
direction. By following the steps from E@23) to Egs.(25)
ﬂai 1 and (26) one obtains the modified equations of motion for
2 (B0 the twist variableA:
and consequentlys =2T/L2. daA, 1 o y
The equation of motion for the twist variables are hence dt 2 <%x SIN6i= 0= A+ ma,~la, (39
of the Langevin form
da, 1 )
A= _FA%"' 7a 31 dt 2 <%y SO0 A, (39

with Ty=1L7 and (7, (1)7,(0))=(7a (1) 74 (0))
=(2T/L?) 5(t).

In the TDGL model the total current conservation condi-

with ig=14/L in units ofi.. The voltage drop in the di-
rection[see Eq.(24)] is given by

V,=—LA, (35

tion can still be imposed whereas the local current conserva-

tion condition is relaxed. Thus Eq$25) and (26) remain

with V, in units of ri, for RSJ and in units of’J/2e for

unaltered whereas the equations for the phase angles are siifPGL, respectively. Thus the equations of motion in the

plified to [compare Eqs(19) and (21)]

Oi:_z ’Sirl(ﬁi—ﬁj—rij'A)—l-ni,

J

(32

where we have used the dimensionless tirbg introducing

presence of an externally imposed dc currgntin the x
direction are given by Eq$27), (33), and(34) for RSJ and
by Egs.(32), (33), and(34) for TDGL.

An alternative and commonly used method in numeri-
cal simulations of the current-drivexY model is to impose
uniform currents through the boundary in one direction.

the time unit of#i/T'J as in Eq.(19). Just as for the RSJ case This requires an open boundary condition for the phase
one finds thatI'y=1/L? and that the noise correlation angles in the direction of the applied current and the periodic

(72, (074, (0))=(a (1) 75 (0))=(2T/L?) 5(t) leads to

the correct equilibrium. To some extent the TDGL dynamic
may be viewed as a simplified version of the RSJ dynamicén
where the total current conservation is kept but the local
current conservation is relaxed. Thus from this point of view

it is perhaps not surprising that the two modés we will
seg have the same generic vortex dynamics.

The twist variableA plays an important role in our analy-

S.

boundary condition can only be kept in the perpendicular
direction?’ This means that an open boundary is explicitly
troduced. One advantage with the present method is that
he periodic boundary conditions on the phase angles are
ept and no explicit boundary is introduced. In the following
two sections we present the results obtained from the dy-
namical equations described in the present section both for
the PBC and the FTBC.

sis of the vortex dynamics and there exists a rather direct

connection between the twist and the vortices: The electric

field E(t) due to the vortex current density is perpendicu-

lar and is, as a consequence of the Josephson relation, giv

byll

— h 1

IV. SIMULATION RESULTS

In this section, we present simulation results for the

TDGL and RSJ dynamics with periodic boundary conditions

PBC and the fluctuating twist boundary conditions FTBC.
For PBC, we use Eq$17) and(18) in the RSJ case and in
the TDGL case Eqg.19) and (20). For FTBC, we use Egs.
(25—(27) for RSJ, and Eq925), (26), and(32) for TDGL.
We integrate the equations of motion by discretizing time

The connection betweefj, (t)) and A is discussed in Ref, _into small stepsAt. At each step the appropriate random
16; when a vortex moves across the sample then the twigfoise, generated from a uniform distribution, is introduced
variable changes by2/L. In other words, if the timéy is  with <77ij(t)2>=2T/At for RSJ and(7;(t)?)=2T/At for
associated with the movement of a vortex across the samplepgL [see Egs(18) and (20)]. We want to integrate to as
then we geA=27/Lty=2m(v)/L? where|(v)|=L/t,isthe  long times as possibf&.On the other hand the largart we
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choose the larger is the error introduced by the discretization.

In order to get a handle of the choice fat we use the
following identity: Let us introduce a local variabkg, on
one particular sit&. The Hamiltonian of the system is then

H=> U(6—
(ij)
with a;#0 for i=k anda;=
function is given by

f?j‘F aj— Eij)

0 otherwise, and the partition

=fI]d%emx—BH)

with the inverse temperatugg=1/T. After a simple change
of variable #,+a;— 6;, we find thatZ does in fact not de-
pend ona, and thus
#InZ
oa’

from which we conclude that

> U (O 0)”

4U")== <

and thus

T=T (36)
provided we have definedl by the local correlations:
2
< > U (6 6)) >
T=1 , (37)

4(U")

where the summation is over four nearest neighdesoted
by j) of sitek. The point is now that for a finitAt one finds
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FIG. 1. The dynamical response functiore(D,w) of the 2D
XY model with RSJ dynamics dt=0.85 for a 64< 64 lattice with
periodic boundary conditiond.The frequencyw is in units of
2eri ./ (see text] The filled squares and circles correspond to the
real part and the absolute value of the imaginary part of the dynami-
cal response function, respectively. The full curve is obtained by
fitting to the real part of the MP form response function in E).
and the broken curve is the imaginary part E9). using the same
values of the fitting parameters as for the full curve. The vertical
broken line corresponds to the for which the peak ratio
[Im[ 1/e(0,0) 1|/Re[ 1/e(0,w) — 1/€(0,0)] is 2/ar. At this w the abso-
lute value of the imaginary part should, accordingly to the MP
form, have a maximum.

gives a good representation of the experimental tats
well as the simulation data for the TDGL dynamics of the
XY model on a sq]uare lattice witi=2 and on the triangular
lattice with p=1," and the 2D Coulomb gas modél.In

the present investigation we find that the same is true for the

that T>T. In the present simulations we use the time stepXY model with RSJ dynamics. This is illustrated in Fig. 1

At=0.01 for TDGL andAt=0.05 for RSJ. These choices
makeT differ from T by less than 3%.
The fact thaff >T for a finite time step suggests that the

which shows the real and imaginary parts o 1(k=0,w)

—1/e(0,0) with RSJ dynamics fof =0.85. The full line in
the figure has been obtained from a least-square fit to the MP

effect of the finite time step to some extent is equivalent tdorm of the real part in Eq(8) with two free parameterse(
an increased temperature. We have tried to take this intndwo), and the broken line has been obtained by using the

account when analyzing quantities related te by noting

that for FTBC one has #(0,0)=0,® which means that
[compare Eq(6)]

~G(0,0
(un -
Thus we can estimate an effective temperature T5§

=G(0,0)(U"). For example, foff =0.80 and the time step
At=0.05 we for RSJ geT®"~0.82 whereas we for TDGL
and the time stept=0.01 getT®"~0.803.

A. Dynamical response functions with periodic boundary
conditions

We will first consider the vortex dynamics as reflected in
the complex dielectric function given by Eq4) and(5). It
has so far been established that the MP form E)sand(9)

same values of the parameters in Ef) (the frequency
range in Fig. 1 corresponds to 008/wy<4.7). The MP
form has the characteristic feature that the ratio
[Im[ 1/e(0,0)]|/Re 1/e(0,w) — 1/€(0,0)]=2/m at the fre-
quency where the imaginary part has its maximum. One sees
directly in Fig. 1 (i.e., without any curve fittingthat the
dotted vertical line is close to this maximum and it is hence
easy to verify that the ratio is indeed close tar2In short,
our present simulations of the complex dielectric function
confirm that the RSJ dynamics is well described by the MP
form at temperatures below as well as somewhat above the
critical temperature in agreement with what was found ear-
lier for the TDGL dynamics in Ref. 7

As pointed out in connection with Eg$8) and (9), the
leading smallw dependence of the MP form

.

is

1
€(0,0)

1
€(0,0)




PRB 59 VORTEX DYNAMICS FOR TWO-DIMENSIONAL XY MODELS 11513

and

1

Im| <
€(0,w)

1O<w|nw

reflects thaG(k=0,t)x 1/ for larget. More precisely, since

&(00)= T2 fwsinth 1 1
YT @ | &(0w) (0,0

In[t&(0,6]

do,

we find for the MP form

T2

GMPot)= [ Ci( wot)Sinwgt — Sin( wgt) coswot],

(39

where the cosine and the sine integrals are defined by ¢
Ci(x)=— [y dtcost/t and sifk)=— [ dtsint/t, respectively.
In the limit of wyt— o0, Eq. (38) reduces to

mZeTCe

2
éMP~ T 1

mZeTCC wot

This 1t tail in the vortex correlations has been verified in
Ref. 12 for TDGL dynamics and in Ref. 10 for the Coulomb
gas model. We will here verify the same result for the RSJ
dynamics.

By necessity, the finite lattice sizes used in the simula-
tions introduce a finite relaxation time; at larget for the
zerok mode. By studying the lattice size dependence of
G(O,t) we have found that this finite size induced relaxation
changes the largedecay from 1t/ to (14)exp(—t/7g). In fact
we have found thaG(0;t) for finite lattices to a good ap-
proximation is of a modified-MP forniMMP):

In[tG(0,6]

GMMP=GMP axp —t/7g). 39 _ . o .
3 7e) (39 FIG. 2. The time correlation function[t(0,t) ] versus time at

Figure 2 shows [tG(0;t)] as a function of time for the sys- 1=0.85 for various system siz¢s =6, 8, 10, 12, 16, and 64
tem sizesL=6, 8, 10, 12, 16, and 64 in case () RSJ from bottom to top in case of(a) RSJ and(b) TDGL dynamics.
and (b) TDGL (’:iyn,amit,:s at’T=(; 85. The full drawn curves The full curves have been obtained by fitting to the modified-MP

g . . . (MMP) form Eq. (39). The figure shows that that the relaxation
are least-square fits to E(B9). As is apparent from Fig. 2, time 7¢ in the MMP form diverges as the system size is increased

tAG approaches a constant for large lattice sizes verifying tha&nd that@s(0.t)o 14 for larget in the thermodynamic limit.
G indeed goes as tlfor larget both for RSJ and TDGL
dynamics. o authors concluded that the TDGL somewhat unexpectedly
The fits to the MMP form(full drawn curves in Fig. 2 describes the experiments on Josephson junction arrays by
show that IntG(0,t) goes as—t/7g for larget. In Fig. 3 we  Shawet al° better than the RSJ model. The conclusion we
have plottedrg [determined by the fit to Ed39)] as a func-  arrive at is different since we find that for FTBC the equiva-
tion of lattice sizel in a log-log scale. From finite-size scal- lence between RSJ and TDGL is restored. The apparent dif-
ing we expect that in the low-temperature phagediverges  ference in case of PBC appears to be a boundary effée
astgL” for largeL wherezis the dynamical critical expo- believe that the physical situation in Ref. 30 and most other
nent. This behavior corresponds to straight lines in Fig. 3 andommon experimental situations are in fact better described
the full straight lines in the figure suggest that the asymptotiby the FTBC. Of course, for large enough system sizes, in-
scaling is reached already for relatively smiallAssuming tensive physical quantities do not depend on the explicit
that this is the case, we find from the slopes of the lines thathoice of boundary condition. But the point here is that,
for T=0.85 z=1.6 in case of RSJ and~2 for TDGL. because the relaxation of the zdranode is described by a
Thus thez values in case of PBC amdifferentfor the RSJ relaxation timerg which diverges for infinite systems, the
and the TDGL dynamics. This difference between RSJ an@xponentz, which describes how this divergence is ap-
TDGL in case of periodic boundary conditions was alsoproached, appears to be sensitive to the choice of boundary
found by Tiesingzet al. in Ref. 8, where in the temperature condition®!
interval Te[1.1,1.3z~2 for TDGL andz~0.9 for RSJ; the We also note that foll =0.90 we findz=~1.6 in case of
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FIG. 3. The relaxation timeg for the time correlation function
G(0¢t) at T=0.85 for RSJXsquaresand TDGL (circles dynamics.
The data points have been obtained from least-square fits to t
MMP form GMMP given by Eq.(39) as shown in Fig. 2. As the
system sizel is increasedrg diverges. However, the exponent
defined byrg~L? appears to havdifferentvalues for the two types

FIG. 4. The dynamical response functior%(ld,w) at k=Kmin
=(0,27/L) for a L=64 array atT=0.85 for RSJ dynamics with

HeTBC (w is in units of Zri./%). The filled squares and circles

correspond to the real part afttie absolute value pthe imaginary
part of 1&(k,w). The full curve is obtained from a least-square fit

to Eq. (8) with two free parameters, ande and the broken curve

of dynamics. The lines are obtained from least-square fits using daig obtained from Eq(9) using these parameter values. The vertical

points forL=8, 10, 12, and 16 in the RSJ case and6, 8, 10, and
12 in the TDGL case, giving~1.6 andz~2.0 for RSJ and TDGL,

broken line is given by the condition that the peak ratio
[Im[ 1/e(k, ) ]|/Re 1/e(k, w) — 1/e(k,0)]= 2/ and at this value of

w, the absolute value of the imaginary part should, according to the
MP form, have a maximum.

RSJ with PBC. This suggests thafor PBC approaches a s result, but Fig. @) suggests that such a behavior is also

value less than 2 as the KT transition is approached fromngistent with the present simulations of ¥ model with
below, although the numerical accuracy may be insufficieni g ; dynamics.

to make a firm conclusion. Next we turn to the diverging relaxation timeand the
dynamical critical exponerz for the case of FTBC. We will

respectively.

B. Dynamics for the fluctuating twist boundary conditions T T

In case of FTBC the static dielectric function function
1/e(k,0) is identically zero for kO, whereas
lim,_o 1/e(k,0)#0 below the KT transitiod® In Ref. 10 it
was shown that for the Coulomb gas model with Langevin

dynamics the function #k,®) for smallk is to good ap-
proximation given by the MP form. Since, as explained
above in Sec. Ill, PBC for the vorticdas in Ref. 10 corre-
sponds to FTBC for th&XY model we also expect to find the
MP form for smallk in the present case. This is illustrated in

Fig. 4 which shows the real and imaginary parts &f{k/w)
for k=(0,27/L) with L=64 for the XY model with RSJ
dynamics. The full drawn and broken curves represent the
MP form just as in Fig. 1 and the dotted line shows that the
peak ratio is close to /. Figure 5 demonstrates that the
imaginary part depends very little on thevalue whereas the
real part increases with decreasigfor fixed frequency.
This behavior has also been found for the Coulomb gas
model with Langevin dynamic&ompare Figs. 11 and 12 in
Ref. 10. Figure 6 shows how the relaxation time, of

0.08

0.06

0.04

18(kw) - 1/&(k,0)

0.02

FIG. 5. The dynamical response functior%(ld,w) at finite k

for aL =64 array aff =0.85 for RSJ dynamics with FTBGu(is in

N N ] units of 2eri./A). The real and imaginary parts are obtained using
G(k,t) depends ork: Gec(e™Y76)/t for larget and 7 di-  the wave vectork= (0k,=2mn, /L) with n,=1, 2, 4, 6, 8, and 10
verges ask is decreased. In Ref. 10 it was found the§  (from top to botton). The imaginary part depends very little on the
«k~2 for the Coulomb gas model with Langevin dynamics. value ofk in the frequency interval around the maximum, in con-
Our present convergence is not good enough for establishingast to the real part which increases with decreaking
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FIG. 6. (a) The time correlation function [tG(k,t)] versus time
t at T=0.85 for RSJ dynamics with FTBC. The wave vectors are
k=(0ky=2mn,/L) with n,=1, 2, 4, 6, 8, and 1@from top to
bottom) and the array size is=64. Ask—0, G(k,t) approaches
G(k,t)— 1k for large values ot. At nonzero value ok, G(k,t)
exhibits exponential decag(k,t)~exd—t/7g(K)]/t in the long-
time limit. The broken lines are plotted with the(k) values cor-
responding to the straight line iib), where we showrg(k) versus
k2. In (b), the squares have been obtained from the least-square
of G(k,t) to the exponential decay form, and the full straight line is
the result of the least-square fit tg (k) <k?.

use the fact that in the low-temperature phase the resistance

R of a finite system is proportional to 472 This follows
because of the Nyquist formufa:

oo

R=okaT) .

dt(V(1)V(0)) (40
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FIG. 7. Resistanc® versus system sizk for (a) RSJ and(b)
TDGL dynamics obtained from E@41). The full lines are obtained
by fitting to the scaling forniR~LZ* and from these fits the values of
z are determined to be=3.3(1), 2.71), and 2.Q1) at T=0.80,
0.85, and 0.90 for the RSJ case, and3.3(1), 2.81), and 2.11) at
T=0.80, 0.85, and 0.90 for TDGL.

guently the finite-size scalinBe1/7cL ~* defines the value
of the dynamical critical exponemtin the low-temperature
phase. For theXY model with FTBC the phase difference

er the sample in one directigfet us choose th& direc-
tion) is given by A¢=LA,. It follows that R can be ex-
pressed as

L2 1
= — — _ 2
R= 5 5 ([A(©)=4,(0)1?), (41)
whereT is in units ofJ/kg, A,(t) is the twist variable in the
x direction at timet, andR is in units of the shunt resistance
r of a single Josephson junction for the RSJ model and
I'J/2ei, for TDGL model, respectively. Since Eg&l0) and

which relates the resistance to the voltage fluctuations ove®1) are identical in the limit of larg®, i.e., for®@> >3 we

the sample and the fact thet<(d/dt)A ¢ whereA ¢ is the

phase difference over the sample. Sidag is dimensionless
it follows thatR scales like 1# wherer is the relevant char-
acteristic time* In the low-temperature phagevanishes in
the limit of large system sizes since diverges. Conse-

for practical reasons use E@l1) in the present simulations
(we have use® =16 000 and®> 7). Figure {a) shows the
results for theXY model with RSJ dynamics fof =0.90,
0.85, and 0.80. The data are plotted as Roggainst log-
and to good approximation fall on a straight line, whose
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FIG. 8. Time evolution of the variableA(t) at T=0.85 as a
function of timet for RSJ dynamics and system sides 6, 8, 10,
12, and 16(from top to bottom. The curves are shifted in the
vertical direction. As seehA(t) sometimes makes discrete jumps
of size 27 (the unit of the vertical axis is 2). The characteristic T
time 7 in Fig. 9 is related to the average time between the 2
jumps.

slope gives an estimate of the critical expongnand we
obtainz=2.0, 2.7, and 3.3, respectively. Figuréby shows
the same features for tB€Y model with TDGL dynamics at
the same three temperatures 0.90, 0.85, and 0.80 and the
estimated values af~2.1, 2.8, and 3.3 are close to the ones
obtained for the RSJ dynamics. L
Thus for the FTBC we find the samebelow the KT
transition for RSJ and TDGL dynamics, which is in contrast
to the PBC case where we found different valuesz gbr
each dynamicgcompare the discussion of Fig. 3 in Sec).lV
Furthermore for FTBC we find thatapparently approaches
2 When_ the KT transition is approa_c_hed from below ( scaling of the resistancR is indeed associated with a divergent
=0.90 is very close to the KT transition temperajufer characteristic time.
both dynamics; this did not seem to be true for the RSJ

dynamics with PBC 1~1.6 atT=0.90). Our conclusion is tice we use a coarse graining of 100 time units in our esti-

that the dynamical critical exponents a boundary sensitive mate of the average time between the imps. The full

quantity. We also note _that the FTBC Is adpquate for descrni drawn straight lines in Fig.(@) have the slopes given by the
ing an open system with voltage fluctuation across the sy

. . % values determined previously from the calculatiorRd&ee
Ejeergc?irt]g ttf;laet fnoonsst'.el?suuea:tgh?s?(?;iistuo;[itglnned for this case Fig. 7(@)]. As seen the two ways of determiniaggree very
It is in fact possible to estimate the characteristic time well. Figures Tb) and 9b) illustrate the same agreement in

. : . f TDGL d ics.
very directly since the variabld, changes by the amount case o ynamics

2L wh A th term inviidir Let us now consider what happens when a finite current is
/L when a vortex moves across the system inytiorec- plied across the system. The scaling argument by D8rsey
tion, as discussed in Sec. lll. Every such event consequent

is signaled by a 2 step in the time series of the variable akes use of the fact that the current densitintroduces a
: ) : . new length scale ¥7*° This new length scale replaces the
LA,. Figure 8 illustrates this for the RSJ dynamicsTat 9 u 9 b

=0.85 for various system sizes. As seen in the figure the 2 finite sizeL. in the leadingl. dependence oR, so that
jumps are very well observable. The characteristic time scale

7 of these 2r jumps is easily estimated as the average time V=R(J Yl
between the jumps and we expect thatL* with the same

dynamical critical exponent as in R~L ™% Figure 9a)

showsr plotted against the system sizen a log-log plot for  and consequently/«12*! below the KT transition as sug-
the RSJ dynamics for three different temperatuiasprac-  gested in Ref. 12. From the finite-size scalingRoéind r we

FIG. 9. The relaxation time- obtained directly from the time
scale of the Zr jumps of LA(t). The obtained values of are
plotted against the system sikdor (a) RSJ andb) TDGL dynam-
ics (see Fig. 8 The full lines represent~L?* with the z values
taken from Fig. 7. The figure illustrates thatetermined from the

[ oc 7%

(J 1)
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TABLE I. Comparison between the exponer:z+ 1 obtained r T T T
from theR(L) simulations and the predicted valueg,.andaauns
for RSJ and TDGL dynamics. The values &f.,. and aqns are
obtained from the averages ouer 10, 12, and 1@see Fig. 10 for
RSJ caske The exponena=z+1 is obtained fromR(L)~L "% in 45 Agcale E
Fig. 7 and is found to be consistent within 7~LZ in Fig. 9. The e =
numbers in parentheses represent the statistical errors of the last ‘q::
digits. It is clearly shown that the exponemtmeasured by direct S
calculation of resistance from E1) is much closer t@g.,.than %
to aayns for both RSJ and TDGL dynamics. = 4l 4
T Ascale aAHNS a apHNS

RSJ —
0.80 4.422) 3.712) 4.31) as | |
0.85 3.802) 3.402) 3.72) ) . . . .
0.90 3.082) 3.022) 3.0 6 8 10 12 14 16
TDGL

0.80 4.5%3) 3.772) 4.31) L
822 gigg ggég gig FIG. 10. Predictions of théV exponent for the RSJ model at

T=0.8 as a function of the system size The open squares are
obtained from ag.ue&=1/eTS9—1 for FTBC whereas the open
circles represendians=1/2¢TSe+ 1 for FTBC.

obtainz and using the scaling argument this related to the
nonlinearlV exponent bya=z+1 whereV~12. In Table |
we have given the values @&=z+1, wherez has been
obtained from the finite-size scaling & Another scaling
argument® gives [see Eq.(10)] z=1/eT°®-2 and conse-
quentlya=z+1=1/eT°®-1. In order to compare this scal-
ing prediction with thez values obtained directly from the

finite-size scaling oR, we need to estimate dl“C. As de-

break down for small enough currents and in this limit one
should instead recover=aanns-

In the next section we investigate the nonlinédrchar-
acteristics more directly by imposing an external current.

V. NONLINEAR IV CHARACTERISTICS

scribed in Sec. IIT¢C is given by T¢C= T/(27J(U")) and In order to obtain thdV characteristics for the 2IXY
1/~:s=limk o 1/e(k,0). However for FTBC we have model with RSJ dynamics we use FTBC and E(3)-
- (35). Figure 11 shows the data obtained from lattice sizes
L=4 to 64, wherev=VI/L is plotted againsty=14/L in a
1 1 log-log plot. As seen from the figure the data are size depen-
—=lim= > =0. dent but forL=64 the data appear to be reasonably size
€ k-0€e(k,0) €(0,0 converged except for the smallest currents. The data in the

figure are forT=0.80 and the straight line is a least-square

So for each sizé we estimate ¥ by 1/e(27/L,0). As men- fit to the L =64 data in the current interval 0.834<0.15 .
tioned in the beginning of this section we can also include gnd glvcisac:4.7, which s in reaspnable a_grgemerﬂ with
small correction due to the finite time st&p in the simula-  8scaie= 1/€T-"—1~4.5. In the following we will investigate
tions for each sizé by replacingT by an effective tempera- the sensmv(;t)éof ﬂ'(IjIS appargln.t agreement to finite size, finite

eff_ & " i _ current, and boundary conditions.

= . =Z+ . .

tijrlta/~_:'ce_(13(0,t(?)/<LtJ 3 , I:;]gure 10 sr;owst.ascegfv\zlh . One finite current effect is that the exponantefers to a
— Lel~ =1 estimated in (nis way as a lunction ofWhen = constant Coulomb gas temperatufié®=T/[27J(U")].
comparing with thea values obtained from the finite-size g;, o 5 finite current changes the valugof), fixed tem-
scaling ofR, we take an average over the relevanhterval.

. ) erature {=const) is not entirely equivalent to fixed Cou-
These values are showq in Table I. As is appar(_ant from Tabl mb gas temperatureTf€%= const). In order to convert the
I, the values ofa determined from the size scaling Bfand

7 agree Very well ilhacy,both fo the RS) case and the o1 "cb 10 Z0.70 and 0,80 or wed extemnal ourrents, and
TDGL case. Thus we conclude that(1/eT“®)—2. This  then by interpolation estimated the voltage value correspond-
conclusion has also been reached for the lattice Coulomb gagg to a fixed TS, The resulting data for a fixed Coulomb
model with Monte Carlo dynamics.Furthermore, by invok- gas temperatureTC®~0.17) are shown in the inset of Fig.
ing the scaling argument described above, we infer that th¢1, The broken line in the inset is a fit to the data and gives
IV exponent should be given by=ag,ez+1=1/€T°® a~4.5. Thus this correction leads to a somewhat smaller
-1 value ofa.

The model given in Ref. 5 suggests the finite-size scaling All previous estimates for the nonlinev exponent for
RxL1"3sale in agreement with our resuls.However, ac- the RSJ model have been obtained for 64 or smaller
cording to the reasoning in Ref. 5, the scaling argunient sizes?*2?” The next question we address is how much the
«1/7 leading to the nonlinedV exponenta=agShould possible remaining size effects could alter the results inferred
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FIG. 11. The current-voltagd ) characteristics af =0.8 for FIG. 13. The res_istandé(c/id)=v/id atT=0.80(open squares
the fluctuating twist boundary condition at various system sizesCOrespond to thé =256 data for FTBC and open circles to the
The full straight line is obtained from the least-square fit in the 2V€@9€ between the=256 data for FTBC and the uniform current
interval 0.03<i4=<0.15 for L=64 which givesa~4.7. The linear ln_Jectlon) is compared to th_e re_5|stancB$L) _at T=0.80 [filled
region with|V exponena= 1, seen for the smaller sizes and small CiIrcles, the same data as in Figail. Choosing the constart

currents(the dotted straight line has the slope-1), disappears as ~0-70 makes the two data sets collapse onto a single curve. The
the system size is increased. InsB¢: curve for L=64 at fixed [ull drawn curve interpolates between the limis=1 for large

Coulomb gas temperaturé®®~0.17, corresponding td =0.80 currents andRe (i 4)2~* for small currentgthe explicit form of the

. L . i i i@ DKo(b/L) i = =
with no external currents. The broken line is obtained from thelMterpolation curve is o™ with a=4.3 andb=1.42). The
least-square fit in the interval 0.67,<0.15, givinga~4.5. figure suggests that the two ways of calculatihgre consistent and
that theR(c/iy4) data are not quite in the asymptotic small-current
. . regime.
for L=64. Figure 12 shows voltageversus the system size

L at the external curren;=0.1 andT=0.8 for three differ- . . ,
circles correspond to our FTBC boundary condition and fi-
ent cases. The open squares at the top correspond to the usug|

uniform current injection method used in Ref. 27. The filled nally the open tnan_g_les at the_ bOttoT co_rrespond to the bus-
bar boundary condition used in Ref29lt is clear from the

figure thatL =0 result cannot be estimated by the- 64 for
ig=0.1. For smallei 4 the situation quickly gets even worse.
Thus this unexpected strong size dependency clearly makes
all earlier results obtained fa from IV simulations some-
what questionabl&?2
As seen in Fig. 12 the uniform current injection appears to
approach thé& =« value from above whereas the FTBC and
the busbar condition appear to approach the«~ value
from below. We have found this to be generally true. From
this we conclude that =256 is enough to estimate the
=oo limit for i4>0.1, since the data for FTBC and uniform
: current injection are closely the same in this case. The value
104 . of a obtained in this converged current region is abaut
w7 ~4.1, which is somewhat smaller thar=4.3 obtained from
4 8 16 32 64 128 256 the finite-size scaling oR in the prgvigus section.
In order to get some further insight, we note that the
L present simulation gives the resistafitev/iy as a function
of iy, as discussed in the previous section, for small enough
for T=0.8. The empty squares are for the uniform current injectionggrr]igggee:tilg(eslyi’ )1/\/{;?23'2 gocr(;i?s?;r?tdi)l;?aizegnilﬁhe
with periodic boundary conditions in the direction perpendicular to . ~dh . y . .
the current. The empty triangles are obtained with the critical curpresent §|mulat|or]s should be equwal.enR(dL) c_)btalned In
renti.= 10 for vertical junctions on the boundaries, which is very the previous section: For an ap_prOp”‘T"te choice of the con-
similar to the busbar boundary. The filled circles are for FTBCStantc the data for these two simulations should fall on a
introduced in Sec. lll. As the system size is increased, the voltage$ingle curve. Figure 13 illustrates this equivalence, the filled

for all three methods are shown to converge towards the same val@rcles are the data fdk(L) and the open squares are tie
in the L= limit. However, the uniform current injection ap- data obtained from FTBC with=256. The open circles are

proaches thé = limit from above whereas the FTBC and busbar the averages between the=256 result for FTBC and uni-
condition approach from below. The lines are guides to the eye. form current injection. When the open circles and squares

FIG. 12. Voltagev versus system size at the curreniy=0.1
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256 =
10—4 L 4
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1 1
0.01 0.1 100 L
Liy FIG. 15. The relation between the finite-size dependence of the

) . ) voltagev and the scaling function(x=Ligy). The full drawn curve
FIG. 14. Demonstration of the validity of the scaling assump-iq (e functiory =iz*1

) ) ! =ig" [f(x)/x]* wheref(x) has been obtained by a
tion. ThelV data for the RSJ model with=0.8 andiy<0.6 are  yat3 smoothing of the data in Fig. 14. The filled circles are the

1 ; ; - ;
plotted asL R™ againstliy. Forz~3.3 all the data for the various  fiyite_size data fop at T=0.8, the same data as the filled circles in
L andiy collapse onto a single scaling functidiix=Li4). The Fig. 12.

horizontal broken line corresponds to the constant value for
LR(L) obtained fori4=0 for the same value cf[see Fig. 7a)].
The straight line corresponds to the linear behaxiEx) ~x for
largex.

Using z as an adjustable parameter, we find that all the data
collapse onto a single scaling curve for 3.3. We empha-
size that this scaling collapse involves omlgefree param-
overlap, theL = limit has been reached. As seen from the &t€r: Z One also notes that the best value for the collapse
figure the two data sets f& to a good approximation fall on (obtained by a least-square methdsl closely the samez(

a single curve. For large currerfsapproaches the junction ~3.3 atT=0.80) as was found in the absence of external
resistance =1 and for small current®e(i )@ *. The full currents shown in Fig. (@. Furthermore, this zeriy data
drawn curve R=e@ DKobio) where K, is a modified collaps_e onto a single vz_ilue_ far= 3.3 when plotted alsRl/Z _
Bessel functiop interpolates between these two limits fand .th|s constant value is given by the broken honzontal line
[Ko(X)~— Inx for small x and Ko(0)=0]. Since the con- " Fig. 14. Thus the data qollapse shoyvn in Flg_. 14 clearly
vergedIV data are higher up on the curve one expects aflemonstrates that t.he scalllng assumptl_on is valid fqr all j[he
apparent smallea than for theR(L) data which are lower data we have obtglned. Since the scaling assumption gives
down on the curve. Our conclusion is that the results fronR= ascae= 2+ 1=1/eT°®~1, our conclusion is thalss,eis

the IV simulations and th&(L) simulations are consistent indeed the correctV exponent over a broad parameter

with each other and with the scaling assumption. range.
The model discussed in Ref. 5 suggests that for small
A. Scaling collapse enoughiy the scaling assumption should break down. Thus

o . o for such small currents the data for large enougbkhould

It is in fact possible to demonstrate the validity of the 5| apove the scaling curve in Fig. 14. There is no sign of
scaling assumption in a more general way: At fixed temperag .y sych deviation in our data. However, this does not pre-
ture FE is only a function ofL and 7. From the fact thaR ¢ de the possibility that such a deviation could in principle
~1/L* at 7=0 and that the combinatiogL is dimension-  occyr for larger sizes and smaller currents than we have been
less, one expects that able to investigate.
f(IL)]? It is also interesting to note that the scaling functidr)
Ehbiuia (42) is intimately connected to the finite-size dependence of the

L voltage for FTBC/[See, for example, Fig. 12 fr=0.8 and

wheref(x) is a dimensionless scaling function. The scalingia= 0.1 (filled circles.] According to Eq.(42) we have
function f(x) must have the limitsf(0)=const sinceR

~1/L? for 7=0, andf(x)«x for largex. The latter follows ,eq T(Lig)|®
because thé — limit has to give a nonvanishing finite. o=ld G| (44)
This means that the combination

LRY=f(7L) (43) The full drawn curve in Fig. 15 gives as a function ofL

using Eq.(44) for iz=0.1 where the scaling functiof(x)
is only a function of /L. In Fig. 14 we have plotted all our has been obtained by a data smoothing of the data in Fig. 14.
simulation data foi4<0.6 asLR'? againsti4L, i.e., the data The filled circles is a replot of the finite-size dependence
shown in Fig. 11 together with data fdr=128 and 256. given as filled circles in Fig. 12. As is apparent from Fig. 15,
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the particular shape of the finite-size dependence is a dire®ef. 9. For our largest lattice sizes 25856 a size-
reflection of the scaling functiof(x). converged result could only be estimated for currents which
The AHNS predictiofi for the nonlineaiV exponent dif- seemed to be outside the true scaling reghivel . How-
fers from the scaling prediction and is instead given by ~ ever, by using the relatioh1/7 valid for small enough7
we showed that the data for the resistance simula®(ln)
1 and thelV simulationsR(c/J) can be made to fall on a
aAHNS:2~—TCG+ 1. single curve for an appropriate choice of the constaithis
€ agreement suggests that div simulations and ouR(L)
The corresponding values are given in Table | and Fig. 10simulations are consistent with each other and with the scal-
Our simulations support the scaling prediction. E.g., Tor ing assumption. We concluded that it is difficult to obtain the
=0.8 and RSJ we find~4.3 which is close to the scaling nonlinearlV exponenta directly from theV(l) data in case
predictionag.,¢~4.4 and differs from the AHNS prediction Of the 2D XY model with RSJ dynamics. This is because

~3.7 resistance ratioR(1)/r<10"2 (r is the junction resistange
aAHNS . . . . . .
seem to be needed. This in turn implies such small currents
VI. SUMMARY AND COMPARISONS that lattice sizes considerably larger than X5%6 are re-

quired to avoid the finite-size effects. However, in case of the
&£D Coulomb gas with Langevin dynamtst has been pos-

2D XY model with RSJ dynamics is well described by theSibIe to converge the simulations closer to where the true

MP form for the dynamical response. This appears to pScalingVe1* appears to be valid and in these cases the scal-
) H _1/.1CG

generic for 2D vortex fluctuations since the same formiNd €xponenta=1/eT~"—1 was deduced from th&(l)

has been found for th&Y model with TDGL dynamicg, —dat@-

the 2D Coulomb gas with Langevin dynantitas well as in forFainf?iIgc,iV:eenf hg:;?l?réhg(t)ﬁz! ?sléwog'?otaaagiﬂ OIst(cLa)ligatiurve
experiments:*31* However, since the 2DXY model with P b 9 9

. . f(x=Lig). Thi i
RSJ dynamics is generally accepted as a valid model for (x=Lig). This data collapse demonstrates that the scaling

. , : N . drgument is indeed valid over a broad parameter range and
2D Josephson junction array, the present investigation ti

_ ! ; ' USfus confirms that the nonlinedv exponent is given by
the MP form found in the present and previous simulations L CG
closer to the MP form found in experimerfts? ascai= 1/eT-2—1 over the parameter range covered by our

We found the critical exponeri=2 at the KT transition data. This does not preclude the possibility that, for smaller

f he finite-si i fh . ina the f currents and larger sizes than we have been able to converge,
rom the finite-size scaling of the resistarReising the fluc-  yhere might be a deviation from the scaling curve given in
tuating twist boundary condition FTBC, both in case of RSJFig_ 14 as suggested by the model in Ref. 5. However, there

and TDGL dynamics. Furthermore, we found the same valug; g sign of any deviation from the scaling curve in our data
of z for RSJ and TDGL for all temperatures below the tran-for the RSJ model.

sition using the same method. However, we also found that |n short, the present simulations of the XIY model with
the finite-size scaling with PBC gave different results. ThusRSJ dynamics confirm the picture that 2D vortex fluctuations
it appears as if the finite-size scaling determinatiorzde-  has an anomalous kind of dynamics. The characteristic fea-
pends on the boundary condition. Our conclusion is that itures of this dynamics are presumably linked to the logarith-
fails for PBC because the characteristic timés inversely  mic vortex interaction. However, a firmer theoretical under-
proportional to the resistanéeand for PBC the resistané®  standing of the characteristic features, which have been
is identically zero for any finite size. This suggests that theencountered in numerous simulations as well as in experi-
proper value o cannot be determined from finite-size scal- ments, is still lacking and is a challenge for future research.
ing with PBC.
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finite-size scaling oR is related directly to a diverging re-

laxation time. Thus our conclusion is thafs larger than 2 APPENDIX: LINEAR RESPONSE

below the KT transition. This result is in agreement with the

model discussed in Ref. 8.Using a scaling argumefit,we pared to the thermal fluctuations gives rise to an average

related the finite-size scaling & to the nonlineadV char- nonvanishing phase differenca(r,t)=(V,(r,t)). Thus
acteristics by noting that the current densifiplays the role Egs.(13) and (14) together with the chain rule gives
of 1/L leading toVel? with a=z+ 1. Consequently, pro-

vided thg s.calm_g airgg:;nentl;s valid, our simulations support P(r—r' t—t')= _Jf 42 dt”
the predictiona=1/eT~>—1.

We also calculated thev exponenta directly from the ,
voltageV as a function of currenit Here we found that the X‘?<U [Vxo(r.H)])
results were strongly size dependent. This large size depen- aq(r”,t")
dence we found for standard current injection boundary,
FTBC, and the “busbar” boundary condition introduced in +o(r—r")s(t—t"), (A1)

The first main result of the present investigation is that th

A total currenti,(r,t) which varies slowly in time com-

A0 1)
di(r',t')

0 ‘ 0
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where |, denote that the resulting averages should be thdU'[V,6(r’,t')] in the XY Hamiltonian. Consequently, the

equilibrium ones. Let us introduce the notation corresponding correlation function is
HU'[V,0(r,t —JXU'[V,0(r,H)JU'[V,0(r" t’
A Cl 2 <" )]) (U'LV,0(r.)]U[V,6(r' t')])
gq(r’,t") 0 and by the fluctuation-dissipation theorem we have
then the Fourier transform of EGAL) is just 2,
les(k,w)Z—Q(k,w)ls(k,w)-i—l (AZ) Q(r1t):?ﬁ<u [an(r,t)]u [an(O,O)D
so that +J(U"[V,6(0,0/])8(r) 5(t)
A for t=0 and O otherwise. Next we note that a space Fourier
P(k,0)= 0+ OKw) transform of the correlation function
’ JHU'[V,6(r,t)JU'[V,6(r',t')]) gives the correlation
We note that function G(k,t) defined in connection with Eq3) so that
o(U'[V,6(r,)]) . 1 (= P
Qr—r't-t"h)= — A _ —iwtA _ - —iot 78
z9q(l",t') o Q(k,w) 0 dte Q(k,t) p0+ T 0 dte (?tG(k't)
=JU"IVo(r,t)HS(r—r")s(t—t") 1. 1 (e o o
= ——G(k,O)——f dte '“'G(k,t) == ,
45 HUTV00,0]) T TJo e(k,)
aqer'ty | (A3)

Here the last term is for#t’ andr#r’ so that the distur- wherepy=J(U") and the result is obtained by partial inte-
bance q(r’,t')=(V,0(r',t’)) couples linearly to gration and comparison with Eq&l)—(6).
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