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Vortex dynamics for two-dimensional XY models
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Two-dimensionalXY models with resistively shunted junction~RSJ! dynamics and time dependent
Ginzburg-Landau~TDGL! dynamics are simulated and it is verified that the vortex response is well described
by the Minnhagen phenomenology for both types of dynamics. Evidence is presented supporting that the
dynamical critical exponentz in the low-temperature phase is given by the scaling prediction~expressed in
terms of the Coulomb gas temperatureTCG and the vortex renormalization given by the dielectric constant
ẽ) z51/ẽTCG22>2 both for RSJ and TDGL and that the nonlinearIV exponenta is given bya5z11 in the
low-temperature phase. The results are discussed and compared with the results of other recent papers and the
importance of the boundary conditions is emphasized.@S0163-1829~99!05317-5#
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I. INTRODUCTION

Superconducting films and two-dimensional~2D! Joseph-
son junction arrays as well as4He films undergo Kosterlitz-
Thouless ~KT! type transitions from the superconduc
ing/superfluid to the normal state.1,2 The KT transition is
driven by thermally created vortex-antivortex pairs whi
start to unbind at the transition.2 This means that some dom
nant characteristic features of the physics close to the tra
tion are associated with vortex pair fluctuations. The gr
current interest in 2D vortex fluctuations stems from the f
that they are also present in high-Tc superconductors, no
only in the case of thin films, but also in 3D samples ju
above the transition.3 It is therefore of interest to understan
the properties associated with these thermally created v
ces. Whereas there is a fairly good consensus on the s
properties associated with vortex pair fluctuations,3 the dy-
namical aspects are less clear and some features are
controversial.

The knowledge of the dynamical properties of vort
fluctuations mainly comes from experiments on superc
ducting films and 4He films,2,3 and from various mode
simulations.3 The theoretical attempts are so far on a rat
phenomenological level2,4,5 with few exceptions.6 The more
explicit knowledge derives from several kinds of simu
tions: XY models with time dependent Ginzburg-Land
~TDGL! dynamics,7 XY models with resistively shunted Jo
sephson junction~RSJ! dynamics,8,9 the Coulomb gas mode
with Langevin dynamics,10 and the lattice Coulomb ga
model with Monte Carlo dynamics.11 There exist two phe-
nomenological descriptions: the Ambegaokar-Halper
Nelson-Siggia~AHNS! description4 and the Minnhagen phe
nomenology ~MP!.2 There are, likewise, two distinc
proposals for the nonlinearIV exponenta, i.e., aAHNS ~Ref.
4! and ascale ~Ref. 12! with a corresponding proposal for
critical dynamical exponentz5ascale21 ~Ref. 12! in the
low-temperature phase. It has also been argued that the
linear IV exponent with the valueascale applies to an inter-
mediate current range whereasaAHNS should be recovered in
the true small-current limit.5 This argument rests on the a
sumption that for any finite current there are free vortic
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present and furthermore that these free vortices can be
scribed by a conventional dynamics withz52.5

In this paper we present extensive simulations of 2DXY
models with RSJ as well as TDGL dynamics using an u
conventional boundary condition. This enables us to obt
more information on the vortex dynamics for these mode

The situation is roughly the following: The MP form o
the dynamical response gives a good description of the
XY models with TDGL dynamics,7 the Coulomb gas mode
with Langevin dynamics,10 and experiments on 2D
superconductors.7,13,14 In the present paper we show that
also gives a good description of 2DXY models with RSJ
dynamics. The dynamical exponentz for the lattice Coulomb
gas with Monte Carlo dynamics has from simulations be
inferred to have the scaling valuez5ascale21.11 In the
present paper we verify this result for theXY models with
both RSJ and TDGL dynamics. This is seemingly in cont
diction to the results in Ref. 8 that the 2DXY models with
RSJ and TDGL dynamics behave differently and appea
have differentz values. The nonlinearIV exponenta has
been found to have the scaling valueascale for the Coulomb
gas with Langevin dynamics10 and the lattice Coulomb ga
with Monte Carlo dynamics.11 However, contradictory re-
sults have been found for theXY model with RSJ dynamics
e.g., a5aAHNS in Ref. 9 anda5ascale in Ref. 12. In the
present paper we find support fora5ascale for the 2D XY
model with RSJ dynamics.

The picture emerging from our perspective is a gene
vortex response well described by the MP form of the f
quency response, the scaling exponentascale and the corre-
sponding dynamical exponentz5ascale21. According to our
view this generic vortex response describes both Coulo
gas models and 2DXY models and is insensitive to the de
tailed type of the dynamics be it Coulomb gas Langevi
Monte Carlo-, TDGL-, or RSJ-type.

The content of the present paper is the following: In S
II we describe theXY-type models and the relevant correl
tion and response functions, as well as the relation to
vortex and Coulomb gas degrees of freedom. We also
cuss the validity of linear response and the relation betw
the complex impedance and the dielectric function of
11 506 ©1999 The American Physical Society
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Coulomb gas. In Sec. III the dynamical equations are
scribed and the boundary condition is introduced and
cussed. Sections IV and V contain our simulation resu
Sec. IV the equilibrium ones and Sec. V the result when
system is driven by an external current. Finally in Sec. VI
summarize our results and make some final remarks.

II. XY MODEL

On a phenomenological level, a 2D supercond
tor/superfluid can be described by an order parameterc(r )
5uc(r )ueiu(r ), whereuc(r )u2 is proportional to the superfluid
density and¹u(r ) is proportional to the superfluid velocity.2

The energy associated with the order parameter is the kin
energy of the current and consequently the energy is pro
tional to*d2r @¹u(r )#2/2.2 A positive ~negative! vortex cen-
tered at a certain point is associated with the topolog
excitation characterized by that the line integral*¹u(r )•dl
of an arbitrary small closed loop around the point is equa
2p(22p). There is a precise mapping between the vorti
of a 2D superconductor and 2D Coulomb gas charges.2 Since
our interest in the present paper is the dynamical effect
the thermal vortex fluctuations, we will describe our resu
in the language of 2D Coulomb gas charges.

The XY-type models in a broad sense are models rep
senting the continuum order parameterc(r )5uc(r )ueiu(r )

put on a lattice. Let us for convenience choose a squ
lattice. The discretized version is thenc j5uc j ueiu j , where
the indexj denotes the lattice points. Let us simplify furth
by neglecting the variations of the magnitude of the or
parameter and takeuc j u5ucu to be a constant. The dis
cretized version of the energy then takes the form

HXY5J(̂
i j &

U~f i j 5u i2u j !, ~1!

whereJ}ucu2 is termed theXY coupling constant and th
sum is over nearest-neighbor pairs. The lattice constan
taken to be unity so thatf i j 5u i2u j corresponds to¹u ~in
the direction fromj to i ). The functionU(f) has to be equa
to f2/2 for smallf in order to yield the correct continuum
limit and in additionU(f) has to be a periodic function o
2p since the phase angleu i for each lattice point is only
defined upto a multiple of 2p. A possible choice forU(f) is
then

U~f!512 cosf

and with this choice the model is the usual 2DXY model or
the planar rotor model. This particular interaction wou
e.g., arise if each lattice point was a small superconduc
island which was Josephson coupled to its nearest neighb
and the system is called a Josephson junction array~JJA!.
We will use this choice of the interaction in the present p
per. However, from the point of view of vortex fluctuation
any U(f) fulfilling the necessary requirements stipulat
above is a valid choice. A possible generalization is

U~f!5
2

p2 F12 cos2p2S f

2 D G , ~2!
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wherep51 corresponds to the usualXY model. The practi-
cal point with such a generalization is that the vortex dens
increases with increasingp.15 Consequently the vortex re
sponse is sometimes easier to extract from simulations f
p value larger than 1.7

The Boltzmann factor for a particular configuration
given bye2HXY /T whereT is the temperature in units ofkB
51. From this all thermodynamic properties can be o
tained.

The mapping between theXY model and the Coulomb
gas representation is as follows:16 The effective temperature
variable for the Coulomb gas charges is given byTCG

5T/@2pJ^U9&#, where T is the temperature for theXY
model, ^•••& denotes a thermal average, andU9
5]2U/]f2. The supercurrent through a link is given b
JU85J]U/]f. The Coulomb gas chargenl , corresponding
to an elementary plaquette of the square latticel, is given by
the directed sum~corresponding to a line integral! over the
four links ^ i j & making up the plaquette:16

nl[
TCG

T (
^ i j &P l

U8.

The correlation functionĜ(k,t) is a key quantity and is de
fined by

Ĝ~k,t ![
1

V
^F̂~k,t !F̂~2k,0!&,

whereF̂(k,t) is the 1D Fourier transform:

F̂~k,t !5(
m

Fm~ t !eikm,

m labels the rows of the lattice, and finally

Fm~ t !5J (
^ i j &Pm

U8@f i j ~ t !#,

where the summation is over all the links making up the r
m. The Fourier transformation of the charge density corre
tion function ĝ(k,t) is related toĜ(k,t) by

Ĝ~k,t !5S T

TCGD 2
ĝ~k,t !

k2
. ~3!

Linear-response theory then linksĝ(k,t) with the dielectric
response function 1/ê(k,v) by7

ReF 1

ê~k,v!
G5

1

ê~k,0!
1

2pvTCG

T2 E
0

`

dt sinvtĜ~k,t !,

~4!

ImF 1

ê~k,v!
G52

2pvTCG

T2 E
0

`

dt cosvtĜ~k,t !, ~5!

where

1

ê~k,0!
512

2pTCG

T2
Ĝ~k,0!. ~6!
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The quantities 1/ê(0,v) and Ĝ(0,t) will be of particular in-
terest in the present investigation.

The thermodynamic KT transition is characterized by

lim
k→0

1

ê~k,0!
5

1

ẽ
.0

below the transition and

lim
k→0

1

ê~k,0!
50

above. Precisely at the transition lim
k→0

1/ê(k,0)TCG jumps

from the universal value 1/ẽTCG54 to zero.17,18 The equal-
time correlations fall off like power laws with distance belo
the transition and exponentially above.2 For example, the
correlation functionG(r ,t50) falls off like

G~r ,0!}r 2~1/ẽTCG22! ~7!

below the transition temperature. The fact that the corre
tions decay algebraically with distance reflects that the wh
low-temperature phase is quasicritical.

As explained in the previous section one motivation
the present paper is the question of the generality of the
form for the dynamical response, which is given by2

ReF 1

ê~k50,v!
2

1

ê~0,0!
G5

1

ẽ

v

v1v0
, ~8!

ImF 1

ê~k50,v!
G52

2

ẽp

vv0 ln v/v0

v22v0
2

. ~9!

The characteristic frequencyv0 vanishes as the KT trans
tion is approached from above and below.7 The idea behind
the MP form is that it describes the response due to
bound pairs. Consequently, it is expected to have the cor
leading small-frequency behavior below the KT transiti
whereas it can only be approximately correct above beca
of the presence of free vortices which always dominates
response for small enough frequencies and gives a Dr
like response in this limit.7 In the present paper we focus o
the low-temperature phase. In this case the leading smav
behavior of Eqs.~8! and~9! reflects a 1/t decay for larget of
the functionĜ(k50,t).12 One may also observe that Eq.~9!
leads to a logarithmic divergence of the real part of the c
ductivity: s(v);2v Im@1/ê(k50,v)#;2 ln v for small
v, which is compatible with standard scaling argument
Fisher and Fisher, Fisher, and Huse in Ref. 19.20

The two featuresG(r ,t50)}r 2[(1/ẽTCG)22] and Ĝ(k
50,t)5*d2rG(r ,t)}1/t can be turned into an argument fo
the dynamical critical indexz in the following way:12 We
assume thatG(r ,t) must be of the form

G~r ,t !}la f ~r /l,t/t,a/r ,ta /t !,

wherel is the correlation length or screening length whi
diverges in the low-temperature phase,t is the correspond-
ing diverging relaxation time so that
-
le

r
P

e
ct

se
e
e-

-

y

t}lz,

wherez is the dynamical exponent. In addition we have
short distance scalea, i.e., the lattice constant or the size of
Coulomb gas particle and a nondiverging characteristic t
scale ta , i.e., ta} l 2/D where D is a vortex or Coulomb
particle diffusion constant andl is some nondiverging length
scale likel 5a or l 51/An wheren is the density of Coulomb
gas particles. Let us chooset50 andr 5l so that

G~r ,0!}r a f ~1,0,a/r ,`!

and make thead hocscaling assumption that

lim
r→`

f ~1,0,a/r ,`!5 f ~1,0,0,̀ !5const,

where constÞ0 andÞ6`. This requiresa521/ẽTCG12
sinceG(r ,0)}r 2[(1/ẽTCG)22]. We then also have that

E d2rG~r ,t !5l2~1/ẽTCG!12E d2r f ~r /l,t/t,a/r ,ta /t !.

Now we choosel5t1/z so that

E d2rG~r ,t !5t [ 2~1/ẽTCG!12]/zE d2r f ~r /t1/z,1,a/r ,ta /t !

and assume that

lim
t→`

f ~r /t1/z,1,a/r ,ta /t !5 f ~0,1,a/r ,0!5 f̃ ~a/r !,

where f̃ (x) is a well-behaved function so that

E d2rG~r ,t !}t [ 2~1/ẽTCG!12]/zE d2r f̃ ~a/r !

for larget. This is consistent with*d2rG(r ,t)}1/t provided

z5
1

ẽTCG
22. ~10!

The dynamical exponentz given by Eq.~10! has been
inferred through simulations of the lattice Coulomb gas w
Monte Carlo dynamics.11 In the present paper we conclud
that the same is true for theXY models both with RSJ and
TDGL dynamics.

It has been argued by Dorsey,21 using scaling analysis
that for a 2D superconductor the exponenta in the nonlinear
IV characteristicsV}I a has the valuea5z11 precisely at
the KT transition. It has further been suggested
Minnhagen12 that since the whole low-temperature phase
quasicritical the same relation should apply throughout
low-temperature phase. This together with Eq.~10! leads to
the prediction

a5ascale5z115
1

ẽTCG
21. ~11!

The nonlinearIV exponenta5ascale in Eq. ~11! has been
inferred through simulations for the Coulomb gas mod
with Langevin dynamics10 and the lattice Coulomb ga
model with Monte Carlo dynamics.11
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The response to an imposed current is for a 2D superc
ductor given by the complex impedanceZ(v):2,22

E~v!5Z~v!j ~v!,

where E(v) is the frequency dependent electric field a
j (v) is the current density. Or equivalently for a quadra
sampleV(v)5Z(v)I (v), whereV is the voltage across th
superconductor in some direction andI is the total current in
the same direction. The linear-response functionZ21(v) is
related to the Coulomb gas linear-response function 1/ê(k
50,v) by

Z21~v!}
r0

ivê~k50,v!
, ~12!

wherer0 is the density of superconducting electrons wh
for an XY model is given byJ^U9&. This means that the
effect on the vortex fluctuations of an imposed current
given by 1/ê(k50,v). For smallv this is the dominant con
tribution.

It is instructive to consider the linear response to an
posed current directly in the case of theXY model with RSJ
dynamics. Let us consider a quadratic lattice and let^ i j &x be
a link at positionr parallel to thex axis and denote the
difference in phase angle byf i j 5¹xu(r ); when the cou-
pling to the electromagnetic field is includedf i j denotes the
gauge invariant phase difference. The supercurrent thro
the link at timet is JU8@¹xu(r ,t)# and the normal current is
proportional to2¹xu̇(r ,t) where the dot denotes the tim
derivative. Thus the total currenti x(r ,t) through the link is

i x~r ,t !52¹xu̇~r ,t !1JU8@¹xu~r ,t !# ~13!

in some convenient unit system. The voltage in the R
model is proportional to the normal current so we can de
the response function corresponding to the complex imp
ance asZ(r2r 8,t2t8)5 Ṗ(r2r 8,t2t8), where

P~r2r 8,t2t8!52
]^¹xu~r ,t !&

] i x~r 8,t8!
U

i x50

. ~14!

It is shown in the Appendix that the Fourier transform ofP is
given by

P̂~k,v!5F iv1
r0

ê~k,v!
G21

, ~15!

wherer05J^U9& so that

Ẑ~k,v!5F11
1

iv

r0

ê~k,v!
G21

. ~16!

This means that the response to a uniform time varying c
rent is given byZ(v)5Ẑ(0,v). Below the KT transition we
have

lim
v→0

lim
k→0

1

ê~k,v!
5`
n-

s

-

gh

J
e
d-

r-

so that the static response to a uniform static current be
the KT transition is nonlinear. However, for any finite fre
quency the response is linear to the lowest order. One
notes that in the limit of high frequency 1/ivê(k,v) van-
ishes andẐ in Eq. ~16! reduces toZ(`)51, which means
that the response in this limit is given by the resistive sh
in the RSJ model. For smaller frequencies the respons
given by the vortex fluctuationZ(v)} ivê(0,v)/r0 as al-
ready stated in Eq.~12!.

III. DYNAMICAL EQUATIONS AND BOUNDARY
CONDITIONS

Simulations by necessity involve lattices with a finite li
ear dimensionL from which the results for the thermody
namic limit L→` have to be extracted. This means that
practice the choice of boundary condition is essential.23 The
most commonly used boundary condition in order to extr
the thermodynamic limit for theXY models is periodic
boundary conditions~PBC! imposed on the phase anglesu i .
However, as discussed in Ref. 16, the PBC for the ph
angles leads to a nonperiodic boundary condition for the v
tex interaction. The boundary condition for the phase ang
which corresponds to a periodic vortex interaction is inste
the fluctuating twist boundary condition~FTBC!.16 The dy-
namics we are investigating in the present paper are linke
the vortex fluctuations and consequently the natural bou
ary condition is PBC for the vortices. This is the common
used boundary condition for simulations of the lattice Co
lomb gas with Monte Carlo dynamics11 and the continuum
Coulomb gas with Langevin dynamics.10 Thus the important
point in the present context is thatPBC for the vortices
meansFTBC for the phase angles. The FTBC for the phase
angles has so far been used in connection with Monte C
simulations.16 In the present paper we extend the use of th
boundary conditions toXY models with RSJ and TDGL
dynamics.24 Of course the boundary condition should n
matter in the limitL→`. However, we in the present pape
find that by using FTBC for the phase angles we are able
extract more information from our finiteL simulations.

In this section, we briefly review the dynamical equatio
of motion for RSJ and TDGL in the case of PBC for th
phase angles. Then we construct the equations of motion
FTBC starting from total current conservation and the co
dition that the equations of motion should lead to the corr
equilibrium distribution. We focus on the ordinaryXY
model, which corresponds top51 case in the previous sec
tion, but the extension to a generalp is straightforward.

We begin with anL3L array of the resistively shunte
junctions with PBC in both directions. In the RSJ dynam
of 2D XY model the net current from sitei to sitej is written
as the sum of the supercurrent, the normal resistive curr
and the thermal noise current:

i i j 5 i c sin~f i j 5u i2u j !1
Vi j

r
1G i j ,

wherei c[2eJ/\ is the critical current of the single junction
Vi j is the potential difference across the junction,r is the
shunt resistance, and the phase anglesu i are periodic in both
directions (u i5u i 1Lx̂5u i 1Lŷ). The thermal noise currentG i j
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at temperatureT is required to satisfy^G i j (t)&50 and
^G i j (t)Gkl(0)&5(2kBT/r )d(t)(d ikd j l 2d i l d jk). The current-
conservation law at each site, together with the Joseph
relationd(u i2u j )/dt52eVi j /\, allows us to write the equa
tions of motion in the form

u̇ i52(
j

Gi j (
k

8@sin~u j2uk!1h jk#, ~17!

where the primed summation is over four nearest neighb
of j, Gi j is the lattice Green function on the square latt
with PBC, h jk is the dimensionless thermal noise curre
defined byh jk[G jk / i c , and the unit of time is\/2eric . The
thermal noise current satisfies^h i j (t)&50 and

^h i j ~ t !hkl~0!&52T~d ikd j l 2d i l d jk!d~ t !, ~18!

whereT is in units ofJ/kB .
In the TDGL dynamics with PBC, on the other hand, t

equations of motion are given by25

\
du i~ t !

dt
52G

]H

]u i
1G i~ t !,

whereG is a dimensionless constant which determines
time scale of relaxation,H[2J(^ i j & cos(ui2uj) is the
Hamiltonian of the usualXY model, andu i is periodic in
both directions. The thermal noise termG i(t) is assumed to
satisfy^G i(t)&50 and^G i(t)G j (0)&52\GkBTd i j d(t). After
rescaling the time and the temperature in units of\/GJ and
J/kB , respectively, the equations of motion for TDGL d
namics are written as

u̇ i52(
j

8 sin~u i2u j !1h i , ~19!

where the thermal noise termh i[G i /GJ satisfies^h i(t)&
50 and

^h i~ t !h j~0!&52Td i j d~ t !. ~20!

In numerical simulations for PBC, we use Eqs.~17! and~19!
for RSJ and TDGL dynamics, respectively, with the cor
sponding thermal noises satisfying Eqs.~18! and ~20!.

Next we consider the fluctuating twist boundary conditi
FTBC. In this case a variableD[(Dx ,Dy) is introduced and
the phase differencef i j on the bond (i , j ) is changed into16

u i2u j2r i j •D, ~21!

where r i j [r j2r i is a unit vector from sitei to j, and the
phase angles are periodic:u i5u i 1Lx̂5u i 1Lŷ . In the study of
equilibrium behaviors for FTBC using MC simulations, it
sufficient to know the Hamiltonian of the system16

H52J(̂
i j &

cos~u i2u j2r i j •D!. ~22!

In dynamical simulations, on the other hand, we must a
have equations of motion for the new variablesDx andDy in
addition to the equations of motion for phase variablesu i .

The physical situation we have in mind is a sample wh
no current passes through the boundary. For the RSJ m
which has local current conservation, this implies the to
current conservation condition*dr2i(r ,t)50, where i(r ,t)
on

rs

t

e

-

o

e
el,
l

5@ i x(r ,t),i y(r ,t)# is the total current density at pointr and
the integral is over the whole sample. This condition can a
be expressed as

Vx

r
52

i c

L (
^ i j &x

sin~u i2u j2Dx!2hDx
~23!

~and the similar equation for they direction!, where the sum-
mation(^ i j &x

is over all nearest-neighboring pairs inx direc-

tion, Vx is the voltage drop over the sample, andhDx
denotes

the thermal noise current. This follows because the left-h
side is recognized as the normal current whereas the ri
hand side is the negative of the sum of the supercurrent
the noise current. As discussed in connection with Eq.~13!
the voltage is by the Josephson relation proportional
¹u̇(r ,t). For the voltage across the sample this means
@see Eq.~21!#

Ḋx52
2e

\L
Vx , ~24!

because the phase angles are by construction subject to
odic boundary conditions. Thus from Eqs.~23! and~24!, we
obtain the equations of motion for the twist variables:

dDx

dt
5

1

L2 (
^ i j &x

sin~u i2u j2Dx!1hDx
, ~25!

dDy

dt
5

1

L2 (
^ i j &y

sin~u i2u j2Dy!1hDy
, ~26!

where we have again writtent in units of \/2eric . Next a
noise correlation consistent with the equilibrium conditi
has to be found. To this end we make the ansatz of a stan
white-noise correlation ^hDx

(t)hDx
(0)&5^hDy

(t)hDy
(0)&

5sD
2 d(t) and determine the appropriatesD

2 in the following
way: The equations of motion for the phase variables
FTBC are written as

u̇ i5hi2(
j

(
k

8Gi j h jk , ~27!

with

hi[2(
j

Gi j (
k

8 sin~u j2uk2D jk! ~28!

and

^h i j ~ t !hkl~0!&5s2~d ikd j l 2d i l d jk!d~ t !,

where s252T @see Eq.~18!#. From the full equations of
motion for RSJ model in FTBC@Eqs.~25!–~27!#, we arrive
at the Fokker-Planck equation:26

]W

]t
52(

i

]

]u i
~hiW!2

]

]Dx
~hxW!2

]

]Dy
~hyW!

1
1

2
s2(

i , j
Gi j

]2W

]u i]u j
1

1

2
sD

2 S ]2W

]Dx
2

1
]2W

]Dy
2 D ,
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where W5W($u i%,Dx ,Dy ;t) is the probability distribution
function and

hx[
1

L2 (
^ i j &x

sin~u i2u j2Dx!,

and the similar equation forhy . The stationary solution
which satisfies]W/]t50, is of the correct formW5e2bH

with the Hamiltonian given by Eq.~22! provided

bs2

2
5bT51, ~29!

bsD
2

2
5

1

L2
, ~30!

and consequentlysD
2 52T/L2.

The equation of motion for the twist variables are hen
of the Langevin form

Ḋ52GD

]H

]D
1hD ~31!

with GD51/L2 and ^hDx
(t)hDx

(0)&5^hDy
(t)hDy

(0)&
5(2T/L2)d(t).

In the TDGL model the total current conservation con
tion can still be imposed whereas the local current conse
tion condition is relaxed. Thus Eqs.~25! and ~26! remain
unaltered whereas the equations for the phase angles are
plified to @compare Eqs.~19! and ~21!#

u̇ i52(
j

8 sin~u i2u j2r i j •D!1h i , ~32!

where we have used the dimensionless timet by introducing
the time unit of\/GJ as in Eq.~19!. Just as for the RSJ cas
one finds thatGD51/L2 and that the noise correlatio
^hDx

(t)hDx
(0)&5^hDy

(t)hDy
(0)&5(2T/L2)d(t) leads to

the correct equilibrium. To some extent the TDGL dynam
may be viewed as a simplified version of the RSJ dynam
where the total current conservation is kept but the lo
current conservation is relaxed. Thus from this point of vi
it is perhaps not surprising that the two models~as we will
see! have the same generic vortex dynamics.

The twist variableD plays an important role in our analy
sis of the vortex dynamics and there exists a rather di
connection between the twist and the vortices: The elec
field E(t) due to the vortex current densityj v is perpendicu-
lar and is, as a consequence of the Josephson relation, g
by11

E5
h

2e
^ j v~ t !&.

The connection between̂j v(t)& and Ḋ is discussed in Ref
16; when a vortex moves across the sample then the t
variable changes by 2p/L. In other words, if the timet0 is
associated with the movement of a vortex across the sam
then we getḊ52p/Lt052p^v&/L2 whereu^v&u5L/t0 is the
e

-
a-

im-

s
s
l

ct
ic

en

ist

le,

vortex velocity. If there areNv moving vortices, then we
obtainḊ52p(Nv /L2)^v&52p^ j v&, which leads to the rela-
tion given by Eq.~24!:

Ḋx52
2e

\L
Vx ,

whereVx is the voltage drop across the sample inx direction
~we obtain the similar equation forDy).

So far we have considered the situation when the to
current in the sample is zero, which corresponds to no c
rent passing over the boundary. Let us now consider the c
when the total current is a constant dc currentI d in the x
direction. By following the steps from Eq.~23! to Eqs.~25!
and ~26! one obtains the modified equations of motion f
the twist variableD:

dDx

dt
5

1

L2 (
^ i j &x

sin~u i2u j2Dx!1hDx
2 i d , ~33!

dDy

dt
5

1

L2 (
^ i j &y

sin~u i2u j2Dy!1hDy
~34!

with i d5I d /L in units of i c . The voltage drop in thex di-
rection @see Eq.~24!# is given by

Vx52LḊx ~35!

with Vx in units of ri c for RSJ and in units ofGJ/2e for
TDGL, respectively. Thus the equations of motion in t
presence of an externally imposed dc currentI d in the x
direction are given by Eqs.~27!, ~33!, and~34! for RSJ and
by Eqs.~32!, ~33!, and~34! for TDGL.

An alternative and commonly used method in nume
cal simulations of the current-drivenXY model is to impose
uniform currents through the boundary in one directio
This requires an open boundary condition for the ph
angles in the direction of the applied current and the perio
boundary condition can only be kept in the perpendicu
direction.27 This means that an open boundary is explici
introduced. One advantage with the present method is
the periodic boundary conditions on the phase angles
kept and no explicit boundary is introduced. In the followin
two sections we present the results obtained from the
namical equations described in the present section both
the PBC and the FTBC.

IV. SIMULATION RESULTS

In this section, we present simulation results for t
TDGL and RSJ dynamics with periodic boundary conditio
PBC and the fluctuating twist boundary conditions FTB
For PBC, we use Eqs.~17! and ~18! in the RSJ case and in
the TDGL case Eqs.~19! and ~20!. For FTBC, we use Eqs
~25!–~27! for RSJ, and Eqs.~25!, ~26!, and~32! for TDGL.

We integrate the equations of motion by discretizing tim
into small stepsDt. At each step the appropriate rando
noise, generated from a uniform distribution, is introduc
with ^h i j (t)

2&52T/Dt for RSJ and^h i(t)
2&52T/Dt for

TDGL @see Eqs.~18! and ~20!#. We want to integrate to as
long times as possible.28 On the other hand the largerDt we
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choose the larger is the error introduced by the discretizat
In order to get a handle of the choice forDt we use the
following identity: Let us introduce a local variableak on
one particular sitek. The Hamiltonian of the system is the

H5(̂
i j &

U~u i2u j1ai2aj !

with aiÞ0 for i 5k and ai50 otherwise, and the partition
function is given by

Z5E )
i

du i exp~2bH !

with the inverse temperatureb[1/T. After a simple change
of variableu i1ai→u i , we find thatZ does in fact not de-
pend onak and thus

]2 ln Z

]ak
2

50,

from which we conclude that

4^U9&5
1

T K F(
j

8U8~uk2u j !G2L ,

and thus

T5T̃ ~36!

provided we have definedT̃ by the local correlations:

T̃[
K F(

j
8U8~uk2u j !G2L

4^U9&
, ~37!

where the summation is over four nearest neighbors~denoted
by j ) of sitek. The point is now that for a finiteDt one finds
that T̃.T. In the present simulations we use the time s
Dt50.01 for TDGL andDt50.05 for RSJ. These choice
makeT̃ differ from T by less than 3%.

The fact thatT̃.T for a finite time step suggests that th
effect of the finite time step to some extent is equivalent
an increased temperature. We have tried to take this
account when analyzing quantities related to 1/ê by noting
that for FTBC one has 1/ê(0,0)50,16 which means that
@compare Eq.~6!#

T5
Ĝ~0,0!

^U9&
.

Thus we can estimate an effective temperature byTeff

5Ĝ(0,0)/̂ U9&. For example, forT50.80 and the time step
Dt50.05 we for RSJ getTeff'0.82 whereas we for TDGL
and the time stepDt50.01 getTeff'0.803.

A. Dynamical response functions with periodic boundary
conditions

We will first consider the vortex dynamics as reflected
the complex dielectric function given by Eqs.~4! and ~5!. It
has so far been established that the MP form Eqs.~8! and~9!
n.

p

o
to

gives a good representation of the experimental data,13 as
well as the simulation data for the TDGL dynamics of t
XY model on a square lattice withp52 and on the triangular
lattice with p51,7 and the 2D Coulomb gas model.10 In
the present investigation we find that the same is true for
XY model with RSJ dynamics. This is illustrated in Fig.
which shows the real and imaginary parts of 1/ê (k50,v)
21/ê(0,0) with RSJ dynamics forT50.85. The full line in
the figure has been obtained from a least-square fit to the
form of the real part in Eq.~8! with two free parameters (ẽ
andv0), and the broken line has been obtained by using
same values of the parameters in Eq.~9! ~the frequency
range in Fig. 1 corresponds to 0.08,v/v0,4.7). The MP
form has the characteristic feature that the ratio
uIm@1/ê(0,v)#u/Re@1/ê(0,v)21/ê(0,0)#52/p at the fre-
quency where the imaginary part has its maximum. One s
directly in Fig. 1 ~i.e., without any curve fitting! that the
dotted vertical line is close to this maximum and it is hen
easy to verify that the ratio is indeed close to 2/p. In short,
our present simulations of the complex dielectric functi
confirm that the RSJ dynamics is well described by the M
form at temperatures below as well as somewhat above
critical temperature in agreement with what was found e
lier for the TDGL dynamics in Ref. 7.29

As pointed out in connection with Eqs.~8! and ~9!, the
leading smallv dependence of the MP form

ReF 1

ê~0,v!
2

1

ê~0,0!
G}v

FIG. 1. The dynamical response function 1/ê(0,v) of the 2D
XY model with RSJ dynamics atT50.85 for a 64364 lattice with
periodic boundary conditions.@The frequencyv is in units of
2eric /\ ~see text!.# The filled squares and circles correspond to t
real part and the absolute value of the imaginary part of the dyna
cal response function, respectively. The full curve is obtained
fitting to the real part of the MP form response function in Eq.~8!
and the broken curve is the imaginary part Eq.~9! using the same
values of the fitting parameters as for the full curve. The verti
broken line corresponds to thev for which the peak ratio

uIm@1/ê(0,v)#u/Re@1/ê(0,v)21/ê(0,0)# is 2/p. At this v the abso-
lute value of the imaginary part should, accordingly to the M
form, have a maximum.
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and

ImF 1

ê~0,v!
G}v ln v

reflects thatĜ(k50,t)}1/t for larget. More precisely, since

Ĝ~0,t !5
T2

p2TCGE0

`sinvt

v
ReF 1

ê~0,v!
2

1

ê~0,0!
Gdv,

we find for the MP form

ĜMP~0,t !5
T2

p2ẽTCG
@Ci~v0t !sinv0t2sin~v0t !cosv0t#,

~38!

where the cosine and the sine integrals are defined
Ci(x)[2*x

`dt cost/t and si(x)[2*x
`dt sint/t, respectively.

In the limit of v0t→`, Eq. ~38! reduces to

ĜMP'
T2

p2ẽTCG

1

v0t
.

This 1/t tail in the vortex correlations has been verified
Ref. 12 for TDGL dynamics and in Ref. 10 for the Coulom
gas model. We will here verify the same result for the R
dynamics.

By necessity, the finite lattice sizes used in the simu
tions introduce a finite relaxation timetG at larget for the
zero-k mode. By studying the lattice size dependence
Ĝ(0,t) we have found that this finite size induced relaxati
changes the large-t decay from 1/t to (1/t)exp(2t/tG). In fact
we have found thatĜ(0,t) for finite lattices to a good ap
proximation is of a modified-MP form~MMP!:

ĜMMP[ĜMP exp~2t/tG!. ~39!

Figure 2 shows ln@tĜ(0,t)# as a function of time for the sys
tem sizesL56, 8, 10, 12, 16, and 64 in case of~a! RSJ
and ~b! TDGL dynamics atT50.85. The full drawn curves
are least-square fits to Eq.~39!. As is apparent from Fig. 2
tĜ approaches a constant for large lattice sizes verifying
Ĝ indeed goes as 1/t for large t both for RSJ and TDGL
dynamics.

The fits to the MMP form~full drawn curves in Fig. 2!
show that lntĜ(0,t) goes as2t/tG for large t. In Fig. 3 we
have plottedtG @determined by the fit to Eq.~39!# as a func-
tion of lattice sizeL in a log-log scale. From finite-size sca
ing we expect that in the low-temperature phasetG diverges
astG}Lz for largeL wherez is the dynamical critical expo
nent. This behavior corresponds to straight lines in Fig. 3
the full straight lines in the figure suggest that the asympt
scaling is reached already for relatively smallL. Assuming
that this is the case, we find from the slopes of the lines
for T50.85 z'1.6 in case of RSJ andz'2 for TDGL.
Thus thez values in case of PBC aredifferent for the RSJ
and the TDGL dynamics. This difference between RSJ
TDGL in case of periodic boundary conditions was a
found by Tiesingaet al. in Ref. 8, where in the temperatur
intervalTP@1.1,1.3#z'2 for TDGL andz'0.9 for RSJ; the
by

J

-

f

at

d
ic

at

d

authors concluded that the TDGL somewhat unexpecte
describes the experiments on Josephson junction array
Shawet al.30 better than the RSJ model. The conclusion
arrive at is different since we find that for FTBC the equiv
lence between RSJ and TDGL is restored. The apparent
ference in case of PBC appears to be a boundary effect.31 We
believe that the physical situation in Ref. 30 and most ot
common experimental situations are in fact better descri
by the FTBC. Of course, for large enough system sizes,
tensive physical quantities do not depend on the exp
choice of boundary condition. But the point here is th
because the relaxation of the zero-k mode is described by a
relaxation timetG which diverges for infinite systems, th
exponentz, which describes how this divergence is a
proached, appears to be sensitive to the choice of boun
condition.31

We also note that forT50.90 we findz'1.6 in case of

FIG. 2. The time correlation function ln@tĜ(0,t)# versus timet at
T50.85 for various system sizes@L56, 8, 10, 12, 16, and 64
from bottom to top# in case of~a! RSJ and~b! TDGL dynamics.
The full curves have been obtained by fitting to the modified-M
~MMP! form Eq. ~39!. The figure shows that that the relaxatio
time tG in the MMP form diverges as the system size is increa

and thatĜ(0,t)}1/t for large t in the thermodynamic limit.
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RSJ with PBC. This suggests thatz for PBC approaches a
value less than 2 as the KT transition is approached fr
below, although the numerical accuracy may be insuffici
to make a firm conclusion.

B. Dynamics for the fluctuating twist boundary conditions

In case of FTBC the static dielectric function functio
1/ê(k,0) is identically zero for k50, whereas
limk→0 1/ê(k,0)Þ0 below the KT transition.16 In Ref. 10 it
was shown that for the Coulomb gas model with Lange
dynamics the function 1/ê(k,v) for small k is to good ap-
proximation given by the MP form. Since, as explain
above in Sec. III, PBC for the vortices~as in Ref. 10! corre-
sponds to FTBC for theXY model we also expect to find th
MP form for smallk in the present case. This is illustrated
Fig. 4 which shows the real and imaginary parts of 1/ê(k,v)
for k5(0,2p/L) with L564 for the XY model with RSJ
dynamics. The full drawn and broken curves represent
MP form just as in Fig. 1 and the dotted line shows that
peak ratio is close to 2/p. Figure 5 demonstrates that th
imaginary part depends very little on thek value whereas the
real part increases with decreasingk for fixed frequency.
This behavior has also been found for the Coulomb
model with Langevin dynamics~compare Figs. 11 and 12 i
Ref. 10!. Figure 6 shows how the relaxation timetG of
Ĝ(k,t) depends onk: Ĝ}(e2t/tG)/t for large t and tG di-
verges ask is decreased. In Ref. 10 it was found thattG
}k22 for the Coulomb gas model with Langevin dynamic
Our present convergence is not good enough for establis

FIG. 3. The relaxation timetG for the time correlation function

Ĝ(0,t) at T50.85 for RSJ~squares! and TDGL~circles! dynamics.
The data points have been obtained from least-square fits to

MMP form ĜMMP given by Eq.~39! as shown in Fig. 2. As the
system sizeL is increasedtG diverges. However, the exponentz
defined bytG;Lz appears to havedifferentvalues for the two types
of dynamics. The lines are obtained from least-square fits using
points forL58, 10, 12, and 16 in the RSJ case andL56, 8, 10, and
12 in the TDGL case, givingz'1.6 andz'2.0 for RSJ and TDGL,
respectively.
m
t

n

e
e

s

.
ng

this result, but Fig. 6~b! suggests that such a behavior is al
consistent with the present simulations of theXY model with
RSJ dynamics.

Next we turn to the diverging relaxation timet and the
dynamical critical exponentz for the case of FTBC. We will

he

ta

FIG. 4. The dynamical response function 1/ê(k,v) at k5kmin

[(0,2p/L) for a L564 array atT50.85 for RSJ dynamics with
FTBC (v is in units of 2eric /\). The filled squares and circle
correspond to the real part and~the absolute value of! the imaginary

part of 1/ê(k,v). The full curve is obtained from a least-square

to Eq. ~8! with two free parametersv0 and ẽ and the broken curve
is obtained from Eq.~9! using these parameter values. The vertic
broken line is given by the condition that the peak ra

uIm@1/ê(k,v)#u/Re@1/ê(k,v)21/ê(k,0)#52/p and at this value of
v, the absolute value of the imaginary part should, according to
MP form, have a maximum.

FIG. 5. The dynamical response function 1/ê(k,v) at finite k
for a L564 array atT50.85 for RSJ dynamics with FTBC (v is in
units of 2eric /\). The real and imaginary parts are obtained us
the wave vectorsk5(0,ky52pny /L) with ny51, 2, 4, 6, 8, and 10
~from top to bottom!. The imaginary part depends very little on th
value ofk in the frequency interval around the maximum, in co
trast to the real part which increases with decreasingk.
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use the fact that in the low-temperature phase the resist
R of a finite system is proportional to 1/t.32 This follows
because of the Nyquist formula:33

R5
1

2kBTE2`

`

dt^V~ t !V~0!& ~40!

which relates the resistance to the voltage fluctuations o
the sample and the fact thatV}(d/dt)Df whereDf is the
phase difference over the sample. SinceDf is dimensionless
it follows thatR scales like 1/t wheret is the relevant char-
acteristic time.32 In the low-temperature phaseR vanishes in
the limit of large system sizes sincet diverges. Conse-

FIG. 6. ~a! The time correlation function ln@tĜ(k,t)# versus time
t at T50.85 for RSJ dynamics with FTBC. The wave vectors a
k5(0,ky52pny /L) with ny51, 2, 4, 6, 8, and 10~from top to

bottom! and the array size isL564. As k→0, Ĝ(k,t) approaches

Ĝ(k,t)→1/t for large values oft. At nonzero value ofk, Ĝ(k,t)

exhibits exponential decayĜ(k,t);exp@2t/tG(k)#/t in the long-
time limit. The broken lines are plotted with thetG(k) values cor-
responding to the straight line in~b!, where we showtG(k) versus
k2. In ~b!, the squares have been obtained from the least-squa

of Ĝ(k,t) to the exponential decay form, and the full straight line
the result of the least-square fit totG(k)}k2.
ce

er

quently the finite-size scalingR}1/t}L2z defines the value
of the dynamical critical exponentz in the low-temperature
phase. For theXY model with FTBC the phase differenc
over the sample in one direction~let us choose thex direc-
tion! is given by Df5LDx . It follows that R can be ex-
pressed as

R5
L2

2T

1

Q
^@Dx~Q!2Dx~0!#2&, ~41!

whereT is in units ofJ/kB , Dx(t) is the twist variable in the
x direction at timet, andR is in units of the shunt resistanc
r of a single Josephson junction for the RSJ model a
GJ/2eic for TDGL model, respectively. Since Eqs.~40! and
~41! are identical in the limit of largeQ, i.e., forQ@t,33 we
for practical reasons use Eq.~41! in the present simulations
~we have usedQ516 000 andQ@t). Figure 7~a! shows the
results for theXY model with RSJ dynamics forT50.90,
0.85, and 0.80. The data are plotted as logR against logL
and to good approximation fall on a straight line, who

fit

FIG. 7. ResistanceR versus system sizeL for ~a! RSJ and~b!
TDGL dynamics obtained from Eq.~41!. The full lines are obtained
by fitting to the scaling formR;Lz and from these fits the values o
z are determined to bez53.3(1), 2.7~1!, and 2.0~1! at T50.80,
0.85, and 0.90 for the RSJ case, andz53.3(1), 2.8~1!, and 2.1~1! at
T50.80, 0.85, and 0.90 for TDGL.
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slope gives an estimate of the critical exponentz, and we
obtain z52.0, 2.7, and 3.3, respectively. Figure 7~b! shows
the same features for theXY model with TDGL dynamics at
the same three temperaturesT50.90, 0.85, and 0.80 and th
estimated values ofz'2.1, 2.8, and 3.3 are close to the on
obtained for the RSJ dynamics.

Thus for the FTBC we find the samez below the KT
transition for RSJ and TDGL dynamics, which is in contra
to the PBC case where we found different values ofz for
each dynamics~compare the discussion of Fig. 3 in Sec. IV!.
Furthermore for FTBC we find thatz apparently approache
2 when the KT transition is approached from belowT
50.90 is very close to the KT transition temperature! for
both dynamics; this did not seem to be true for the R
dynamics with PBC (z'1.6 atT50.90). Our conclusion is
that the dynamical critical exponentz is a boundary sensitive
quantity. We also note that the FTBC is adequate for desc
ing an open system with voltage fluctuation across the s
tem and that consequently thez values obtained for this cas
describe the most usual physical situation.

It is in fact possible to estimate the characteristic timet
very directly since the variableDx changes by the amoun
2p/L when a vortex moves across the system in they direc-
tion, as discussed in Sec. III. Every such event conseque
is signaled by a 2p step in the time series of the variab
LDx . Figure 8 illustrates this for the RSJ dynamics atT
50.85 for various system sizes. As seen in the figure thep
jumps are very well observable. The characteristic time sc
t of these 2p jumps is easily estimated as the average ti
between the jumps and we expect thatt;Lz with the same
dynamical critical exponentz as in R;L2z. Figure 9~a!
showst plotted against the system sizeL in a log-log plot for
the RSJ dynamics for three different temperatures~in prac-

FIG. 8. Time evolution of the variableLD(t) at T50.85 as a
function of timet for RSJ dynamics and system sizesL56, 8, 10,
12, and 16~from top to bottom!. The curves are shifted in th
vertical direction. As seenLD(t) sometimes makes discrete jump
of size 2p ~the unit of the vertical axis is 2p). The characteristic
time t in Fig. 9 is related to the average time between thep
jumps.
t

J

b-
s-

tly

le
e

tice we use a coarse graining of 100 time units in our e
mate of the average time between the 2p jumps!. The full
drawn straight lines in Fig. 9~a! have the slopes given by th
z values determined previously from the calculation ofR @see
Fig. 7~a!#. As seen the two ways of determiningz agree very
well. Figures 7~b! and 9~b! illustrate the same agreement
case of TDGL dynamics.

Let us now consider what happens when a finite curren
applied across the system. The scaling argument by Dors21

makes use of the fact that the current densityJ introduces a
new length scale 1/J.19 This new length scale replaces th
finite sizeL in the leadingL dependence ofR, so that34

V5R~J21!I}
1

t~J21!
I}J zI

and consequentlyV}I z11 below the KT transition as sug
gested in Ref. 12. From the finite-size scaling ofR andt we

FIG. 9. The relaxation timet obtained directly from the time
scale of the 2p jumps of LD(t). The obtained values oft are
plotted against the system sizeL for ~a! RSJ and~b! TDGL dynam-
ics ~see Fig. 8!. The full lines representt;Lz with the z values
taken from Fig. 7. The figure illustrates thatz determined from the
scaling of the resistanceR is indeed associated with a diverge
characteristic time.
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obtainz and using the scaling argument thisz is related to the
nonlinearIV exponent bya5z11 whereV;I a. In Table I
we have given the values ofa5z11, wherez has been
obtained from the finite-size scaling ofR. Another scaling
argument12 gives @see Eq.~10!# z51/ẽTCG22 and conse-
quentlya5z1151/ẽTCG21. In order to compare this sca
ing prediction with thez values obtained directly from th
finite-size scaling ofR, we need to estimate 1/ẽTCG. As de-
scribed in Sec. II,TCG is given byTCG5T/(2pJ^U9&) and
1/ẽ5 lim

k→0
1/ê(k,0). However for FTBC we have

1

ẽ
5 lim

k→0

1

ê~k,0!
.

1

ê~0,0!
50.

So for each sizeL we estimate 1/ẽ by 1/ê(2p/L,0). As men-
tioned in the beginning of this section we can also includ
small correction due to the finite time stepDt in the simula-
tions for each sizeL by replacingT by an effective tempera
ture Teff5Ĝ(0,0)/̂ U9&. Figure 10 shows ascale5z11
51/ẽTCG21 estimated in this way as a function ofL. When
comparing with thea values obtained from the finite-siz
scaling ofR, we take an average over the relevantL interval.
These values are shown in Table I. As is apparent from Ta
I, the values ofa determined from the size scaling ofR and
t agree very well withascale both for the RSJ case and th
TDGL case. Thus we conclude thatz5(1/ẽTCG)22. This
conclusion has also been reached for the lattice Coulomb
model with Monte Carlo dynamics.11 Furthermore, by invok-
ing the scaling argument described above, we infer that
IV exponent should be given bya5ascale5z1151/ẽTCG

21.12

The model given in Ref. 5 suggests the finite-size sca
R}L12ascale in agreement with our results.35 However, ac-
cording to the reasoning in Ref. 5, the scaling argumenL
}1/J leading to the nonlinearIV exponenta5ascaleshould

TABLE I. Comparison between the exponenta[z11 obtained
from theR(L) simulations and the predicted valuesascaleandaAHNS

for RSJ and TDGL dynamics. The values ofascale and aAHNS are
obtained from the averages overL510, 12, and 16~see Fig. 10 for
RSJ case!. The exponenta[z11 is obtained fromR(L);L2z in
Fig. 7 and is found to be consistent withz in t;Lz in Fig. 9. The
numbers in parentheses represent the statistical errors of the
digits. It is clearly shown that the exponenta measured by direc
calculation of resistance from Eq.~41! is much closer toascalethan
to aAHNS for both RSJ and TDGL dynamics.

T ascale aAHNS a

RSJ
0.80 4.42~2! 3.71~2! 4.3~1!

0.85 3.80~2! 3.40~2! 3.7~1!

0.90 3.05~2! 3.02~2! 3.0~1!

TDGL
0.80 4.55~3! 3.77~2! 4.3~1!

0.85 3.85~2! 3.43~2! 3.8~1!

0.90 3.12~2! 3.06~1! 3.1~1!
a

le

as

e

g

break down for small enough currents and in this limit o
should instead recovera5aAHNS.

In the next section we investigate the nonlinearIV char-
acteristics more directly by imposing an external current.

V. NONLINEAR IV CHARACTERISTICS

In order to obtain theIV characteristics for the 2DXY
model with RSJ dynamics we use FTBC and Eqs.~33!–
~35!. Figure 11 shows the data obtained from lattice siz
L54 to 64, wherev5V/L is plotted againsti d5I d /L in a
log-log plot. As seen from the figure the data are size dep
dent but forL564 the data appear to be reasonably s
converged except for the smallest currents. The data in
figure are forT50.80 and the straight line is a least-squa
fit to the L564 data in the current interval 0.03< i d<0.15
and givesa'4.7, which is in reasonable agreement w
ascale51/ẽTCG21'4.5. In the following we will investigate
the sensitivity of this apparent agreement to finite size, fin
current, and boundary conditions.

One finite current effect is that the exponenta refers to a
constant Coulomb gas temperatureTCG5T/@2pJ^U9&#.
Since a finite current changes the value of^U9&,12 fixed tem-
perature (T5const) is not entirely equivalent to fixed Cou
lomb gas temperature (TCG5 const). In order to convert the
data to fixed Coulomb gas temperature we have calculatev
andTCG for T50.79 and 0.80 for fixed external currents, a
then by interpolation estimated the voltage value correspo
ing to a fixedTCG. The resulting data for a fixed Coulom
gas temperature (TCG'0.17) are shown in the inset of Fig
11. The broken line in the inset is a fit to the data and giv
a'4.5. Thus this correction leads to a somewhat sma
value ofa.

All previous estimates for the nonlinearIV exponent for
the RSJ model have been obtained forL564 or smaller
sizes.9,12,27 The next question we address is how much
possible remaining size effects could alter the results infer

ast

FIG. 10. Predictions of theIV exponent for the RSJ model a
T50.8 as a function of the system sizeL. The open squares ar

obtained from ascale51/ẽTeff
CG21 for FTBC whereas the open

circles representaAHNS51/2ẽTeff
CG11 for FTBC.
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for L564. Figure 12 shows voltagev versus the system siz
L at the external currenti d50.1 andT50.8 for three differ-
ent cases. The open squares at the top correspond to the
uniform current injection method used in Ref. 27. The fill

FIG. 11. The current-voltage (IV) characteristics atT50.8 for
the fluctuating twist boundary condition at various system siz
The full straight line is obtained from the least-square fit in t
interval 0.03< i d<0.15 for L564 which givesa'4.7. The linear
region withIV exponenta51, seen for the smaller sizes and sm
currents~the dotted straight line has the slopea51), disappears as
the system size is increased. Inset:IV curve for L564 at fixed
Coulomb gas temperatureTCG'0.17, corresponding toT50.80
with no external currents. The broken line is obtained from
least-square fit in the interval 0.07< i d<0.15, givinga'4.5.

FIG. 12. Voltagev versus system sizeL at the currenti d50.1
for T50.8. The empty squares are for the uniform current inject
with periodic boundary conditions in the direction perpendicular
the current. The empty triangles are obtained with the critical c
rent i c510 for vertical junctions on the boundaries, which is ve
similar to the busbar boundary. The filled circles are for FTB
introduced in Sec. III. As the system size is increased, the volta
for all three methods are shown to converge towards the same v
in the L5` limit. However, the uniform current injection ap
proaches theL5` limit from above whereas the FTBC and busb
condition approach from below. The lines are guides to the eye
sual
circles correspond to our FTBC boundary condition and
nally the open triangles at the bottom correspond to the b
bar boundary condition used in Ref. 9.36 It is clear from the
figure thatL5` result cannot be estimated by theL564 for
i d50.1. For smalleri d the situation quickly gets even worse
Thus this unexpected strong size dependency clearly m
all earlier results obtained fora from IV simulations some-
what questionable.9,12,27

As seen in Fig. 12 the uniform current injection appears
approach theL5` value from above whereas the FTBC an
the busbar condition appear to approach theL5` value
from below. We have found this to be generally true. Fro
this we conclude thatL5256 is enough to estimate theL
5` limit for i d.0.1, since the data for FTBC and uniform
current injection are closely the same in this case. The va
of a obtained in this converged current region is abouta
'4.1, which is somewhat smaller thana'4.3 obtained from
the finite-size scaling ofR in the previous section.

In order to get some further insight, we note that t
present simulation gives the resistanceR5v/ i d as a function
of i d , as discussed in the previous section, for small eno
current densitiesJ, 1/J should corresponds to a finiteL.
ConsequentlyR(c/ i d), wherec is a constant, obtained in th
present simulations should be equivalent toR(L) obtained in
the previous section: For an appropriate choice of the c
stant c the data for these two simulations should fall on
single curve. Figure 13 illustrates this equivalence, the fil
circles are the data forR(L) and the open squares are theIV
data obtained from FTBC withL5256. The open circles are
the averages between theL5256 result for FTBC and uni-
form current injection. When the open circles and squa

s.

e

n

r-

es
lue

FIG. 13. The resistanceR(c/ i d)5v/ i d at T50.80~open squares
correspond to theL5256 data for FTBC and open circles to th
average between theL5256 data for FTBC and the uniform curren
injection! is compared to the resistancesR(L) at T50.80 @filled
circles, the same data as in Fig. 7~a!#. Choosing the constantc
'0.70 makes the two data sets collapse onto a single curve.
full drawn curve interpolates between the limitsR51 for large
currents andR}( i d)a21 for small currents~the explicit form of the
interpolation curve ise(a21)K0(b/L) with a54.3 andb51.42). The
figure suggests that the two ways of calculatingR are consistent and
that theR(c/ i d) data are not quite in the asymptotic small-curre
regime.
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overlap, theL5` limit has been reached. As seen from t
figure the two data sets forR to a good approximation fall on
a single curve. For large currentsR approaches the junctio
resistancer 51 and for small currentsR}( i d)a21. The full
drawn curve (R5e(a21)K0(bid) where K0 is a modified
Bessel function! interpolates between these two limi
@K0(x);2 ln x for small x and K0(0)50]. Since the con-
vergedIV data are higher up on the curve one expects
apparent smallera than for theR(L) data which are lower
down on the curve. Our conclusion is that the results fr
the IV simulations and theR(L) simulations are consisten
with each other and with the scaling assumption.

A. Scaling collapse

It is in fact possible to demonstrate the validity of th
scaling assumption in a more general way: At fixed tempe
ture R is only a function ofL andJ. From the fact thatR
;1/Lz at J50 and that the combinationJL is dimension-
less, one expects that

R5F f ~JL !

L Gz

, ~42!

where f (x) is a dimensionless scaling function. The scali
function f (x) must have the limitsf (0)5const sinceR
;1/Lz for J50, and f (x)}x for largex. The latter follows
because theL→` limit has to give a nonvanishing finiteR.
This means that the combination

LR1/z5 f ~JL ! ~43!

is only a function ofJL. In Fig. 14 we have plotted all ou
simulation data fori d<0.6 asLR1/z againsti dL, i.e., the data
shown in Fig. 11 together with data forL5128 and 256.

FIG. 14. Demonstration of the validity of the scaling assum
tion. The IV data for the RSJ model withT50.8 andi d<0.6 are
plotted asLR1/z againstLi d . For z'3.3 all the data for the various
L and i d collapse onto a single scaling functionf (x5Li d). The
horizontal broken line corresponds to the constant value
LR(L)1/z obtained fori d50 for the same value ofz @see Fig. 7~a!#.
The straight line corresponds to the linear behaviorf (x);x for
largex.
n

-

Using z as an adjustable parameter, we find that all the d
collapse onto a single scaling curve forz'3.3. We empha-
size that this scaling collapse involves onlyone free param-
eter, z. One also notes that the best value for the colla
~obtained by a least-square method! is closely the same (z
'3.3 at T50.80) as was found in the absence of exter
currents shown in Fig. 7~a!. Furthermore, this zero-i d data
collapse onto a single value forz'3.3 when plotted asLR1/z

and this constant value is given by the broken horizontal l
in Fig. 14. Thus the data collapse shown in Fig. 14 clea
demonstrates that the scaling assumption is valid for all
data we have obtained. Since the scaling assumption g
a5ascale5z1151/ẽTCG21, our conclusion is thatascale is
indeed the correctIV exponent over a broad paramet
range.

The model discussed in Ref. 5 suggests that for sm
enoughi d the scaling assumption should break down. Th
for such small currents the data for large enoughL should
fall above the scaling curve in Fig. 14. There is no sign
any such deviation in our data. However, this does not p
clude the possibility that such a deviation could in princip
occur for larger sizes and smaller currents than we have b
able to investigate.

It is also interesting to note that the scaling functionf (x)
is intimately connected to the finite-size dependence of
voltage for FTBC.@See, for example, Fig. 12 forT50.8 and
i d50.1 ~filled circles!.# According to Eq.~42! we have

v5 i d
z11F f ~Li d!

Li d
Gz

. ~44!

The full drawn curve in Fig. 15 givesv as a function ofL
using Eq.~44! for i d50.1 where the scaling functionf (x)
has been obtained by a data smoothing of the data in Fig
The filled circles is a replot of the finite-size dependen
given as filled circles in Fig. 12. As is apparent from Fig. 1

-

r

FIG. 15. The relation between the finite-size dependence of
voltagev and the scaling functionf (x5Li d). The full drawn curve
is the functionv5 i d

z11@ f (x)/x#z wheref (x) has been obtained by
data smoothing of the data in Fig. 14. The filled circles are
finite-size data forv at T50.8, the same data as the filled circles
Fig. 12.
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the particular shape of the finite-size dependence is a d
reflection of the scaling functionf (x).

The AHNS prediction4 for the nonlinearIV exponent dif-
fers from the scaling prediction and is instead given by

aAHNS5
1

2ẽTCG
11.

The corresponding values are given in Table I and Fig.
Our simulations support the scaling prediction. E.g., forT
50.8 and RSJ we finda'4.3 which is close to the scalin
predictionascale'4.4 and differs from the AHNS prediction
aAHNS'3.7.

VI. SUMMARY AND COMPARISONS

The first main result of the present investigation is that
2D XY model with RSJ dynamics is well described by t
MP form for the dynamical response. This appears to
generic for 2D vortex fluctuations since the same fo
has been found for theXY model with TDGL dynamics,7

the 2D Coulomb gas with Langevin dynamics10 as well as in
experiments.7,13,14 However, since the 2DXY model with
RSJ dynamics is generally accepted as a valid model f
2D Josephson junction array, the present investigation
the MP form found in the present and previous simulatio
closer to the MP form found in experiments.7,13

We found the critical exponentz52 at the KT transition
from the finite-size scaling of the resistanceR using the fluc-
tuating twist boundary condition FTBC, both in case of R
and TDGL dynamics. Furthermore, we found the same va
of z for RSJ and TDGL for all temperatures below the tra
sition using the same method. However, we also found
the finite-size scaling with PBC gave different results. Th
it appears as if the finite-size scaling determination ofz de-
pends on the boundary condition. Our conclusion is tha
fails for PBC because the characteristic timet is inversely
proportional to the resistanceR and for PBC the resistanceR
is identically zero for any finite size. This suggests that
proper value ofz cannot be determined from finite-size sca
ing with PBC.

The exponentz determined from the finite-size scalin
with FTBC were found to be the same for RSJ and TDG
dynamics and to support the scaling predictionz51/ẽTCG

22 in agreement with what was found in Ref. 11 for the 2
lattice Coulomb gas with Monte Carlo dynamics. We a
explicitly showed that the exponentz determined from the
finite-size scaling ofR is related directly to a diverging re
laxation time. Thus our conclusion is thatz is larger than 2
below the KT transition. This result is in agreement with t
model discussed in Ref. 5.35 Using a scaling argument,21 we
related the finite-size scaling ofR to the nonlinearIV char-
acteristics by noting that the current densityJ plays the role
of 1/L leading toV}I a with a5z11. Consequently, pro
vided the scaling argument is valid, our simulations supp
the predictiona51/ẽTCG21.12

We also calculated theIV exponenta directly from the
voltageV as a function of currentI. Here we found that the
results were strongly size dependent. This large size de
dence we found for standard current injection bounda
FTBC, and the ‘‘busbar’’ boundary condition introduced
ct

.
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Ref. 9. For our largest lattice sizes 2563256 a size-
converged result could only be estimated for currents wh
seemed to be outside the true scaling regimeV}I a. How-
ever, by using the relationL}1/J valid for small enoughJ
we showed that the data for the resistance simulationR(L)
and theIV simulationsR(c/J) can be made to fall on a
single curve for an appropriate choice of the constantc. This
agreement suggests that ourIV simulations and ourR(L)
simulations are consistent with each other and with the s
ing assumption. We concluded that it is difficult to obtain t
nonlinearIV exponenta directly from theV(I ) data in case
of the 2D XY model with RSJ dynamics. This is becau
resistance ratiosR(I )/r ,1023 (r is the junction resistance!
seem to be needed. This in turn implies such small curre
that lattice sizes considerably larger than 2563256 are re-
quired to avoid the finite-size effects. However, in case of
2D Coulomb gas with Langevin dynamics10 it has been pos-
sible to converge the simulations closer to where the t
scalingV}I a appears to be valid and in these cases the s
ing exponenta51/ẽTCG21 was deduced from theV(I )
data.

Finally, we showed that all ourIV data and ourR(L) data
for a fixed temperature collapse onto a single scaling cu
f (x5Li d). This data collapse demonstrates that the sca
argument is indeed valid over a broad parameter range
thus confirms that the nonlinearIV exponent is given by
ascale51/ẽTCG21 over the parameter range covered by o
data. This does not preclude the possibility that, for sma
currents and larger sizes than we have been able to conv
there might be a deviation from the scaling curve given
Fig. 14 as suggested by the model in Ref. 5. However, th
is no sign of any deviation from the scaling curve in our da
for the RSJ model.

In short, the present simulations of the 2DXY model with
RSJ dynamics confirm the picture that 2D vortex fluctuatio
has an anomalous kind of dynamics. The characteristic
tures of this dynamics are presumably linked to the logar
mic vortex interaction. However, a firmer theoretical und
standing of the characteristic features, which have b
encountered in numerous simulations as well as in exp
ments, is still lacking and is a challenge for future resear
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APPENDIX: LINEAR RESPONSE

A total currenti x(r ,t) which varies slowly in time com-
pared to the thermal fluctuations gives rise to an aver
nonvanishing phase differenceq(r ,t)5^¹xu(r ,t)&. Thus
Eqs.~13! and ~14! together with the chain rule gives

Ṗ~r2r 8,t2t8!52JE d2r 9dt9

3
]^U8@¹xu~r ,t !#&

]q~r 9,t9!
U

0

•

]^¹xu~r 9,t9!&

] i x~r 8,t8!
U

0

1d~r2r 8!d~ t2t8!, ~A1!
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where u0 denote that the resulting averages should be
equilibrium ones. Let us introduce the notation

Q~r2r 9,t2t9!5J
]^U8@¹xu~r ,t !#&

]q~r 9,t9!
U

0

then the Fourier transform of Eq.~A1! is just

iv P̂~k,v!52Q̂~k,v!P̂~k,v!11 ~A2!

so that

P̂~k,v!5
1

iv1Q̂~k,v!
.

We note that

Q~r2r 8,t2t8!5J
]^U8@¹xu~r ,t !#&

]q~r 8,t8!
U

0

5J^U9@¹u~r ,t !#&d~r2r 8!d~ t2t8!

1J
]^U8@¹xu~r ,t !#&

]q~r 8,t8!
U

0

.

Here the last term is fortÞt8 and rÞr 8 so that the distur-
bance q(r 8,t8)5^¹xu(r 8,t8)& couples linearly to
hy

v.
r

,’’
d

ia

J.

hy

li,
eJU8@¹xu(r 8,t8)# in the XY Hamiltonian. Consequently, th
corresponding correlation function is

2J2^U8@¹xu~r ,t !#U8@¹xu~r 8,t8!#&

and by the fluctuation-dissipation theorem we have

Q~r ,t !5
J2

T

]

]t
^U8@¹xu~r ,t !#U8@¹xu~0,0!#&

1J^U9@¹xu~0,0!#&d~r !d~ t !

for t>0 and 0 otherwise. Next we note that a space Fou
transform of the correlation function
J2^U8@¹xu(r ,t)#U8@¹xu(r 8,t8)#& gives the correlation
function Ĝ(k,t) defined in connection with Eq.~3! so that

Q̂~k,v!5E
0

`

dte2 ivtQ̂~k,t !5r01
1

TE0

`

dte2 ivt
]

]t
Ĝ~k,t !

5r02
1

T
Ĝ~k,0!2

1

TE0

`

dte2 ivtĜ~k,t !5
r0

ê~k,v!
,

~A3!

wherer05J^U9& and the result is obtained by partial inte
gration and comparison with Eqs.~4!–~6!.
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