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Transition in the two-dimensional step model: A Kosterlitz-Thouless transition in disguise
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Evidence for a Kosterlitz-Thouless transition in the two-dimensional~2D! step model is obtained from
Monte Carlo determinations of the helicity modulus. It is argued that the free energy of a single vortex at the
center of the system depends logarithmically on the system size in spite of the fact that the spin interaction is
not harmonic for small differences in the spin angles. We conclude that this is the reason for the Kosterlitz-
Thouless transition in the 2D step model and that the harmonic spin interaction not is a necessary requirement.

DOI: 10.1103/PhysRevB.63.052407 PACS number~s!: 05.50.1q, 05.70.Jk, 64.60.Cn
ha

th
d

tia
ng

o

ic

u

d
o

y
fo
ite
ai
s
a

y
iti
th
th

din

th

n
by
a
o
e

Fi-
tis-

is
-

ted
ead
s

ry
of
t

o

t is

but
red
The phase transition in two-dimensional~2D! XY models
is known to take place through the vortex unbinding mec
nism due to Kosterlitz and Thouless~KT!.1 From the prin-
ciples of universality one expects this transition to remain
same independent of details of the system as, e.g., the un
lying lattice structure. The precise spin interaction poten
U(f), wheref is the angle difference between neighbori
spins, is not supposed to be essential either.U(f) is, how-
ever, required to be periodic in 2p and it seems always to
have been presumed that the interaction in addition has t
harmonic for smallf. The harmonicity for smallf has to do
with the energetics for vortex formation. With a harmon
potential the energy for a single vortex in aL3L lattice goes
as lnL, and in the classical argument by Kosterlitz and Tho
less this property is crucial for the transition.

The subject of the present paper is the 2D step mo
which is anXY model with a spin interaction that has n
harmonic component.U(f) is instead a steplike function

U~f!52J sign~cosf!. ~1!

Since this potential is flat aroundf50 there is no lnL de-
pendence of the energy for a single vortex. This energ
instead independent of system size and one would there
expect a nonvanishing density of free vortices at all fin
temperatures, and consequently no phase transition. Ag
that background the evidence from simulations for a tran
tion were very intriguing. Clear evidence for a transition w
obtained from a Monte Carlo~MC! study of the susceptibil-
ity and the specific heat.2 The increase of the susceptibilit
with lattice size was considered to suggest a phase trans
at T'1.1. Later simulations also provided evidence that
transition actually is in the same universality class as
harmonicXY models.3 The similarity of the behavior close
to the transition of an harmonicXY model and the step
model also led these authors to question the vortex unbin
as the mechanism behind the KT transition.3 How could a
transition driven by vortices be altogether insensitive to
very different energy cost for vortices in the two models?

In the present report we address the question of the
cessity of an harmonic spin potential for the KT transition
examining the behavior of the 2D step model. We first c
culate the helicity modulus and show that the behavior
this quantity gives strong support for a KT transition. W
then demonstrate that the cost infree energyfor a single
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vortex at the center of the system in fact goes as lnL. It is
this feature that stabilizes the low-temperature phase.
nally, we refine the arguments to obtain quantitatively sa
factory estimates.

The helicity modulusY, is a convenient quantity for the
study of KT transitions due to its universal value 2T/p at the
transition,4,5 and the known form of the approach to th
universal value withL.6 The usual procedure in MC simula
tions is to determineY from a correlation function which
involves some derivatives ofU(f).7 Clearly, with a steplike
potential the derivatives of the potential cannot be calcula
and this expression cannot be used. A way out is to inst
start from the defining expression for the helicity modulu

Y5
]2F

]D2U
D50

, ~2!

and perform the simulations with fluctuating twist bounda
conditions.8 In these simulations one collects a histogram
the total twistP(D). Since the probability for a certain twis
is related to the free energy throughP(D)}e2F(D)/T Eq. ~2!
becomes

Y52T
]2 ln P

]D2 U
D50

. ~3!

The simulations are done with twist variables in the tw
directions,Dx andDy , which beside the spin variablesu i are
updated with the Metropolis algorithm. Withr i j a unit vector
between nearest neighbors andD5(Dx ,Dy), the Hamil-
tonian may be written

H5(̂
i j &

US u i2u j2
1

L
r i j •DD5(̂

i j &
U~f i j !.

To get a good acceptance ratio for the twist update i
necessary to make use ofL different twist variables in each
direction, withDx5(k51

L Dx
(k) , ~and similarly in they direc-

tion! where k is the column~row! number. In our simula-
tions, which for convenience were for aZ(256) model, we
used the potentialU(f)52J for 129 angle differences
@2p/2,p/2] and1J for the remaining 127.9 This choice is
not expected to be important for the transition properties,
gives a slight shift of the transition temperature as compa
©2001 The American Physical Society07-1
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BRIEF REPORTS PHYSICAL REVIEW B 63 052407
to the potential of Eq.~1!. The length of the runs were typi
cally 53108/L sweeps through the lattice.

In Fig. 1 we show the histogramP(D) from Monte Carlo
simulations atT50.05J. Since the histogram is peake
aroundD50 the figure immediately gives evidence for
low- temperature phase with a finite stiffness. To determ
Y we fit a quadratic curve to lnP for uD/pu,1/3 and obtain
Y/T50.789(4)~where the given error is one standard dev
tion!. Note that this is slightly larger than the universal val
2/p'0.637, which is required for a stable low-temperatu
phase.

An important feature of the step model is the gap in e
citation energies; there are no excitations with energy,2J.
At T!J the system is therefore at all times in one of
numerous ground states which means that the histog
P(D) is independent of temperature. From Eq.~3! then fol-
lows a linear temperature dependence forY. This is in con-
trast to harmonicXY models for whichY/J approaches
unity in the low-temperature limit.

The temperature dependence ofY is shown in Fig. 2 for
several system sizes together with the dashed line for
universal jump condition 2T/p. We note that the curves sta
out linearly at low temperatures, become size dependen
T/J'0.75, cross the universal line, and then drop down
zero. Beside the unusual linear temperature dependen
low T this behavior is just as in an ordinary harmonicXY

FIG. 1. Twist histogram obtained through MC simulations
T50.05. The solid line is obtained by fitting the data to a quadra
form which givesY/T50.789.

FIG. 2. The helicity modulus versus temperature forL58
through 256. The rapid decrease down to zero directly follows
crossing of the data with the universal line, 2T/p ~dashed line!.
This behavior is suggestive of a KT transition. Note that ev
thoughY→0 at low temperatures, the system remains in the lo
temperature phase sinceY/T.2/p.
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model and therefore precisely what one would expect fo
KT transition.

To determine the KT temperature we make use of
finite-size dependence ofY.6 We follow the procedure in
Ref. 10 of first fitting our MC data forY from a narrow
temperature interval to second order polynomials inT, one
for eachL, and then fit the data to the expression

YL~TKT!5
2TKT

p S 11
1

A12 lnL D , ~4!

which amounts to adjustingTKT and A to get the best pos
sible fit. Using data forL>16 we obtainedTKT50.765(6).
Figure 3 illustrates the good fit of the data at the transit
temperature to the line from Eq.~4!. We consider the above
MC data to be strong evidence for a KT transition. This is
agreement with the conclusion in Ref. 3 that the step mo
is in the same universality class as the harmonicXY model.

We now propose an analytical analysis in order to und
stand this behavior. We focus on the properties in the lo
temperature phase where the angular differences are
stricted to the low-energy region,ufu<p/2. A central idea in
the present paper is to note that, while in the harmonicXY
model the spinwave-vortex interaction only is a smooth p
turbation, in the step model this interaction leads to a d
matic and crucial effect: while the energy of a system with
single vortex fixed in the center of the system is finite, t
free energyof this system grows as lnL. This is due to the
change in entropy of spinwave fluctuations for the config
ration with the fixed vortex, as compared to the vortex fr
case. Note that this is the entropy associated with afixed
vortex, not the positional entropy associated with a free v
tex’s variable location.

To demonstrate the existence of this spinwave entropy
consider the configuration of spins in Fig. 4~a! where we
slightly reorganize the spins and delete the links in the ra
direction. We will return below to the approximation in
volved in this step.

The condition for having a positive vortex in the center
the system in Fig. 4~a! is that the phase rotates by 2p along
each of the circles. We therefore introduceF r5(f along
the circle with radiusr, which is a sum of'2pr values and

t
c

e

n
-

FIG. 3. Determination of the transition temperature. The so
line is Eq.~4! and the data points are the helicity modulus from o
simulations.
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BRIEF REPORTS PHYSICAL REVIEW B 63 052407
let V r(F r) denote the number of possible combinations
the f:s at distancer as a function ofF r , which is defined
only for F r52pn ~with integern). The probability for hav-
ing a ~positive! vortex is then determined by the product

Pvort')
r 51

L
V r~2p!

V r~0!
. ~5!

The fractionV r(2p)/V r(0) may be calculated if we tempo
rarily open up a closed path that makes up a circle. Since
want the same number of links along this path we need
more spin variable at one of the endpoints, which we take
be independent of the other endpoint.F r then becomes a
sum of'2pr independent variablesf. With the average of
f being equal to zero and its variance given bys2, the
distribution of F r for this open path becomes a Gauss
with width 2prs2:

V r
open~F r !}expS 2

F r
2

2pr 32s2D . ~6!

We now make use of the fact that the number of poss
configurations for the open and closed paths are the sam
the spins at the endpoints of the open path are equal. S
this condition is equal to havingF r52pn we conclude that
V r(2pn)5V r

open(2pn). From Eqs.~5! and~6! the probabil-
ity for a vortex then becomes

Pvort5expS 2
p

s2 (
r 51

L
1

r D 'expS 2
p

s2
ln L D ,

for the entropy of a fixed vortex we obtainSvort5 ln Pvort
52p/s2 ln L, and the free energy for a vortex at a fixe
position in a system of sizeL finally becomes

Fvort52TSvort5T
p

s2
ln L. ~7!

For the harmonicXY model the well-known argument fo
the phase transition gives the free energy for having a vo
at any of theL2 positions as

DF5~pJ22T!ln L,

and the transition takes place atT/J52/p. In the step model
the corresponding expression becomes

FIG. 4. Arrangement of links used to~a! argue for the change in
spinwave entropy for a vortex at a fixed position and~b! estimate
the helicity modulus.
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DF5Fvort22T ln L5TS p

s2
22D ln L,

where the temperature at first sight only appears as a pre
tor. However, there is a hidden temperature dependenc
the variances2. At low enough temperatures thef i j are
restricted to the interval@2p/2,p/2# but with increasing
temperature thef i j will more often take values outside thi
interval, ands2 will increase. Therefore, ifDF is positive at
low temperatures it will turn negative at some finite tempe
ture and this will give the transition. But ifs2.p/2 already
at low temperatures there will be no transition.

To see how the local restrictions on the angle differen
give rise to the nonzero helicity modulus we now turn to
rectangular geometry and consider the determination oY
from the distribution ofDx andDy . One point with examin-
ing the distribution of the twist is to give predictions that a
easy to compare with MC simulations. In the simplest a
proximation we again delete all links in the perpendicu
direction, as in Fig. 4~b!. For a single row the number o
configurations consistent with a certain total twist becom
V row(D)}exp(2D2/2Ls2), in analogy with Eq.~6!, and the
number of configurations for the whole system withL rows
becomes

V~D!5@V row~D!#L}exp~2D2/2s2!.

For the free energy we then arrive atF(D)5TD2/2s2 and
with Eq. ~2! the helicity modulus becomes

Y5T/s2. ~8!

In the absence of perpendicular links and at low tempe
tures, thef i j have a rectangular distribution, and from e
ementary integrals one findss25p2/12'0.822. Through
Eq. ~8! this givesY/T'1.22 which is about 50% larger tha
Y/T'0.789 from Monte Carlo simulations, cf. Fig. 1. A
better estimate will be obtained below by including som
links in the perpendicular direction.

Comparing Eqs.~7! and ~8! we find Fvort(L)5Yp ln L
which is the same relation as in the harmonic model. T
shows that our two different calculations are equivale
which is a consequence of using the same approximatio
both cases, i.e., neglecting all links perpendicular to the
rection of interest.

We now discuss the assumption used above, namely
the qualitatively correct behavior in a certain direction m
be obtained even though one neglects the perpendic
links. This assumption is true only if the relative reduction
the number of allowed configurations obtained by introdu
ing perpendicular links is essentially independent of the to
twist in the direction of interest. We argue that this is
plausible assumption by considering two sets of configu
tions:~i! the set of all twist free configurations and~ii ! the set
of configurations with a twistDx . There is then a transfor
mationf i j 1D/L→f i j on all the horizontal links that trans
forms each member in the twist free set into a correspond
one in the twisted set. Since this transformation now affe
the angle difference at the perpendicular links, it follows th
the effect of the perpendicular links will be to exclude t
7-3
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BRIEF REPORTS PHYSICAL REVIEW B 63 052407
same number of configurations in both these sets and
suggests that the relative reduction due to the perpendic
links will be independent ofD. However, this argument only
serves to make our assumption a reasonable one; it is
conclusive. There is nothing that guarantees that the rela
reduction of theallowedconfigurations~with uf i j u,p/2 for
all horizontal links! will be the same for the two differen
sets. That a certain member of the twist free set is allow
does not imply that the corresponding member in the twis
set is also allowed.

Even though we have argued that the perpendicular li
may be neglected in a qualitative discussion, they have to
included in order to get reasonable quantitative estima
since they do affect the variances2. To include some per-
pendicular links we consider the configuration in Fig. 5~a!,
where the perpendicular links have been deleted at e
third row only. The approach is then to integrate out t
upper and lower rows of spins in each of these triple rows
give L/3 one-dimensional rows, cf. Fig. 5~b!. These integra-
tions may be done analytically or by Monte Carlo simu
tions on that geometry. The integrations also give corre
tions to the neighboring and next-neighboring links,^ff8&
and^ff9& ~cf. Fig. 6!, which together give an effective var
anceseff

2 :

FIG. 5. The configuration of links used to get quantitative
reasonable values. The starting point is given in panel~a!, and after
integrating out the upper and lower rows on each triple row o
obtains the links shown in panel~b!.
05240
is
lar

ot
ve

d
d

s
be
s,

ry
e
o

-
-

seff
2 5

1

L K S (
i 51

L

f i D 2L 's21^ff8&1^ff9&. ~9!

With L/3 rows, as in Fig. 5~b!, the expression for the helicity
modulus becomesY5T/(3s eff

2 ). From our MC simulations
on the geometry of Fig. 5~a! we get s250.672, ^ff8&
520.120, and̂ ff9&520.026. The first two of these num
bers are easily obtained by integrating analytically with sy
bolic software. With Eq.~9! this gives seff

2 50.526 and
Y/T50.633 which is less than 20% offY/T50.789 ob-
tained above.

To conclude we have presented evidence from simu
tions that the 2D step model actually undergoes a KT tr
sition. We have argued that the reason for the stability of
low-temperature phase against the formation of free vorti
is the lnL dependence of the free energy for a vortex a
fixed position. From these results we are led to the conc
sion that the harmonic spin interaction is not a necess
condition for a KT transition in a 2D spin model, and that t
KT transition is a more general phenomenon than has so
been recognized.
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FIG. 6. Illustration to the link-link correlations in Eq.~9!.
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