Dynamic critical behavior of the XY model in small-world networks

Katya Medvedyeva

Department of Theoretical Physics, Umeå University, Sweden

January, 2003

Ph.D. Petter Holme, Umeå University, Sweden
Dr. Kim Beom Jun, Ajou University, Korea
Prof. Petter Minnhagen, Nordic Institute for Theoretical Physics, Denmark
Introduction

The Watts and Strogatz (WS) model of small-world networks

XY model

Length scales

Static critical exponents

Dynamic critical exponents:
 - used methods
 - finite-size scaling

Discussion of the results

http://www.tp.umu.se/~medv/
Introduction

What do we study?

Critical behavior of the XY model on the Watts and Strogatz model of small-world networks

How do we study it?

- Monte Carlo simulations
- the short-time relaxation method
- finite-size scaling

What do we obtain?

The static and dynamic critical exponents α, β, ν, z
The Watts-Strogatz Model of Small-World Network

The average path length

\[l \sim N \quad \text{if} \quad P = 0 \quad \text{and} \quad l \sim \log N \quad \text{if} \quad P > 0 \]

⇒ small-world phenomenon emerge at any finite \(P \)

The Hamiltonian:

\[H = -\frac{1}{2} \sum_{i \neq j} J_{ij} \cos(\theta_i - \theta_j) \]

where

\[J_{ij} = J_{ji} = \begin{cases} J, & \text{if } (i, j) \text{ is an edge,} \\ 0, & \text{otherwise.} \end{cases} \]

- Transition from disordered to ordered state at \(T_c \) for \(d \geq 2 \)
- Quasi-long-range order for \(d = 2 \)
LENGTH SCALES

d-dimensional regular lattice

- linear size of the system \(L \)
- the correlation length \(\xi \sim |T - T_c|^{-\nu} \)
- the relaxation time \(\tau \sim \xi^z = L^z \)

\[\downarrow \]

\[\chi(t/L^z, \xi/L) \]

Network

- the network size \(N = L^d \)
- the correlation volume \(\xi_V \sim \xi^d \Rightarrow \xi_V \sim |T - T_c|^{-\bar{\nu}} \Rightarrow \bar{\nu} = d\nu \)
- the relaxation time \(\tau \sim N^\bar{z} \Rightarrow \bar{z} = z/d \)
- the typical distance between the ends of shortcuts \(\zeta = (kP)^{-1} \)

\[\downarrow \]

\[\chi(t/N^\bar{z}, \xi/N, \zeta/N) \]
Static critical exponents

- static behavior
- geometry of the network: \(N \gg 1/P \) or \(N \gg \zeta \)

\[
\chi(t/N^z, \xi/N, \zeta/N) \Rightarrow \chi(\xi/N, 0)
\]

- \(m \sim (T_c - T)^\beta \) \(\Rightarrow \beta = 1/2 \)
- \(C_v \sim |T - T_c|^{-\alpha} \) \(\Rightarrow \alpha = 0 \)
- \(\xi_V \sim |T - T_c|^{-\bar{\nu}} \) \(\Rightarrow \bar{\nu} = 2 \)

mean-field transition \(\Rightarrow d \geq 4 \) \(\Rightarrow \nu = \bar{\nu}/d = 1/2 \)
Dynamic Critical Exponent: Used Methods

\[\tau \sim \xi^z \quad \text{at } T_c \implies \tau \sim L^{-z} = N^{-\bar{z}} \quad \text{with} \quad \bar{z} = z/d \]

- **Short-time relaxation method:**

\[
Q(t) = \langle \text{sgn}\left(\sum_{i=1}^{N} \cos \theta_i(t)\right) \rangle
\]

the initial configuration \(\theta_i(0) = 0 \implies Q(0) = 1 \)

and \(Q(t \to \infty) = 0 \)

- **Dynamic Monte-Carlo simulations**

[http://www.tp.umu.se/~medv/]
Dynamic critical exponent: finite-size scaling

$k = 3, P = 0.2$

$Q(t, T, N) = F(t/N^{\tilde{z}}, (T - T_c)N^{1/\tilde{\nu}})$

at T_c: \[Q(t, N) = F(t/N^{\tilde{z}}) \]

$\implies T_c = 2.23, \; \tilde{z} = 0.52(1)$

$a = tN^{-\tilde{z}} = 3$

$Q_a(T, N) = F(a, (T - T_c)N^{1/\tilde{\nu}})$

$\implies T_c = 2.23, \; \tilde{\nu} = 2.0$

http://www.tp.umu.se/~medv/
Dynamic critical exponent: dependence from the parameter P

\[z \approx 0.54(3) \quad \text{for} \quad P \gtrsim 0.03 \]

\[N \gg 1/P \quad \text{fails for} \quad P \lesssim 0.03 \]

\[\chi(t/N^z, \xi/N, \zeta/N) \]
Discussion of the results

XY model on the WS model of small-world networks

- for finite P:

 $\beta = 1/2, \quad \alpha = 0, \quad \bar{\nu} = 2 \rightarrow \nu = \bar{\nu}/d = 1/2$

 - mean-field values

 $\bar{z} = 0.54(3) \rightarrow z = \bar{z}d \approx 2.1$

 \Rightarrow the same universality class as a regular lattice of $d \geq 4$

- there is no critical behavior *induced* by WS model other than the transition from large-world regime $l \sim N$ to small-world regime $l \sim \log N$

- hyper-cubic lattice: number of edges $> 8N$

- we need: $kN = 3N$ and most probably $2N$
The experiment:

- Packages sent closer in geographical and social space to persons at least known by their first name.

The result:

- A median of 5 intermediates.
- Comparing with similar experiments on smaller populations ⇒ a logarithmically increasing shortest path length.
- Average shortest path length of the Earth’s population = 6.