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Quantum mechanics is an immensely successful theory, occupying
a unique position in the history of science. It has solved mysteries
ranging from macroscopic superconductivity to the microscopic theory
of elementary particles and has provided deep insights into the nature
‘of vacaum on the one hand and the description of the nucleon on
the other. Whole new fields such as quantum optics and quantum
electronics owe their very existence to this body of knowledge.

However, despite the stunning Successes of quantum mechanics,
there is no general agreement on the conceptual foundations and
interpretation of the subject. The theory provides unambiguous in-
formation about the outcome of a measurement of a physical object.
However, many feel that it does not provide a satisfactory answer to
the nature of the “reality” we should attribute to the physical objects
between the acts of measurement.

The conceptual difficulty comes about because the wave function |)
is usually given by a coberent superposition of various distinguishable
experimental outcomes. If we denote the collection of states that
represent the possible outcomes of an experiment by lp;), then lv)
=3 ;¢ilv ;) where ¢; = (wjlp). The probability of the outcome |p;) is
pj= lcjI2. In the process of measurement, the so called collapse of the
wave function takes place and a single, definite state fp;) of the physical
object is chosen. The difficulty comes about in the interpretation of
the mechanism by which this definite state is chosen from amongst all
the possible outcomes. .

An important consequence of the quantum mechanical formalism
is that it does not seem 10 allow a local description of events in the
sense discussed below. Alternatively, a local theory can be achieved
but with the additional difficulties of negative probabilities.
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This counter-intuitive nonlocal . agpect of guantum mechanics has
been a subject of debate since the early days. In particular, Einstein,
Podolsky, and Rosen (EPR) conjectured, on the basis of a gedanken
experiment, that quantum mechanics is an incomplete theory. In the
absence of a concrete experimental situation to test the reality and
locality aspects of quantum mechanics, the debate concerning the

foundations of quantum mechanics continued to be essentially philo-
sophical in nature for many years. ) :

The situation however changed &me&oEE when, in 1964, J. S. Bell
formulated certain inequalities, known as Bell’s inequalities,® which
should always be true for any theory that satisfies the intuitively
reasonable notions of reality and locality. One of the most interesting
results of modern physics is that quantum mechanics violates Bell’'s
inequalities in certain situations, and that experimental results agree
with the quantum mechanical predictions.

In this chapter, we present the EPR arguments concerning the
incompleteness of quantum mechanics. We then discuss Bell’s inequality
and the quantum mechanical results violating it. The disagreement
between Bell’s inequality and the quantum mechanical predictions
is further sharpened by the study of various alternative theories to
quantum mechanics, hidden variable (HV) theories being prominent
among these. In order to better understand the problern, we show
that a “nonlocal’ hidden variable theory can be developed which is in

agreement with quantum theory. Finally, we show that a new kind of
equality, the so-called Greenberger-Horne—Zeilinger (GHZ) equality,
is violated by quantum mechanics.

The present chapter, and the next two chapters as well, deal with
interpretational ‘problems of quantum mechanics. In all such studies,
we follow the lead of Lamb [1969]; namely, develop the analysis
around the theory for an apparatus which is designed to make the

appropriate measurements. This sharpens the arguments and keeps .
the goal in focus.

18.1 The EPR ‘paradox’

In 1935, Einstein, Podolsky, and Rosen (EPR) presented an argument
to show that there are situations in which the general probabilistic
scheme of quantum theory seems to be incomplete. Here we present a
variation of this argument due to Bohm.

* For a beautiful account of the subject, see Mermin [1990a,b].
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18.1 The EPR ‘paradox’
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(a)

(b)

' <
%rw,ﬁ = denotes the state before (¢ < to) ‘looking’ at particle 1. Now
Il aiter a measurement on particle 1 we find it to be, say, in the spin
down state | |;), then the state of particle 2 is given by

lw3) =112 (18.1.3)

Here p3 denote E
3 s the state of system 2 after (: i
e , ifter (t > tp) measuring
At this point EPR argue as follows: since at the time of measure-
nwnnﬂ @6 two systems no longer interact, no: real change has taken
place in the second system as a consequence -of anything that may

Fig. 18.1
Schematic of:
EPR gedanke
experiment,
spin-zero syste

through a
Stern-Gerlach
apparatus

the x-axis.
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happen to the first system. That is, there exists no interaction between
the two systems. Furthermore; EPR argue, since we have not affected
particle 2 by looking at 1, the state-of particle 2 must be the same
before and after the measurement. That is,

fps) = lw3) =112}, (18.14)

where |p5) and |p3) denote the ‘before’ and ‘after’ states.

But we could have just as well decided to measure the x-component
of particle 1 as in Fig. 18.1(b). Therefore, we naturally describe our
spins in terms of | + x) states

1
ﬂ: DEARNY (18.1.5)

and our spin singlet state before the measurment is

I

l£x) =15 =

R e R (1816)
Now after finding spin 1 to be in, say, the state |-1), we have

163) =1+2), - (18.1.7)
which, following the EPR argument as before, implies

|65) = I+2)s ‘ (18.1.8)

a very unsatisfactory state of affairs! For in the words of EPR: ‘Thus,
it is possible to assign two different state vectors fin our notation | 12)
and |42)] to the same reality.

One way out of this problem is to argue that when we are looking
at a subsystem (e.g., particle 2 only), then we should be using a density
matrix formulation. In general, when we are considering a composite
system consisting of two subsystems, 4 and B, and if we are only
interested in expectation values of operators 04 which refer to system
A alone, ie.,

0=04®15 (18.19)

then we are led to introduce the reduced density matrix p4. That is,
expressed in terms of the total density matrix p4p we have

(@) = Trus(pasd) = D (@ blpasQla, b)
ab
=3 (@ S bloastal)Qula) = Tra(pala),  (18.110)
a b

where reduced density matrix for system A is
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) _
o) = b _ :
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quantitative test of the hidden variable approach. It is shown that, by
performing correlation experiments of the type considered in EPR’s
argument, one can distinguish between the predictions of certain hid-
den variable theories and quantum mechanics.

18.2 Bell’s inequality

We consider the EPR gedanken experiment illustrated in Fig. 18.2.
A spin-zero system °‘splits’ into two spin-1/2 particles which then
have anticorrelated values of spin projection along any given axis.
For the purpose of proving Bell’s theorem we are interested in the
probability that particle 1 will pass through a Stern—Gerlach apparatus
(SGA,) in Fig. 18.2 which is oriented at an angle 6, with the vertical
(+2) direction and that particle 2 will pass through a Stern—-Gerlach
apparatus (SGA,) which is oriented at an angle 6, to the vertical. We
denote this joint passage probability by P(6,,6p) = Pg. To proceed
with the proof, we first establish our notation by considering the
expression,

particle 1 particle 2
Pp=P(+ - O | - 4+ O). (18.2.1)
a b ¢ a b ¢

Here, the left side of the partition in the expanded notation refers to
particle 1 and the right side to particle 2. As shown in Eq. (18.2.1)
there are three ‘slots’ on each side of the partition in which we have
put either a plus sign, a minus sign, or a circle. The first, second, and
third slots are reserved for information concerning passage through
an SGA oriented at the angles 8,, 85, and 6., respectively. A plus sign
refers to passage and a minus sign to blockage. A circle means that the
particular joint probability in question does not contain information
about passage at that angle. So for example in Eq. (18.2.1) the first +
means that particle 1 passes the SGA oriented at 8, but then particle
2 would not pass through a SGA oriented at 6, and this we denote
by a —. Likewise if particle 2 passes through a SGA at 0, we put a +
in the record slot to the right of the vertical bar and therefore a — in
the record slot associated with particle 1.

Now that we have explained the notation in general, let us retutn
to Eq. (18.2.1). Recall that P, denotes- the probability that particle
1 passes SGA, oriented at the angle 0, to the z-axis and particle 2
passes SGA, oriented at the angle 8, to the vertical. Likewise we write,

BP0 4 =[O =), (182.2)
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and

Pe=P(+ O —| = O 4. (18.2.3)

The usefulness of this notation bécomes apparent when we take
the next step. Although the joint probability P,, says nothing about
passage at §, we do know that for any given particle the probability
that it will pass an SGA oriented at 6, to the vertical plus the
probability that it will not pass such an apparatus must be equal to

unity. Using this fact and the anticorrelation of the spin projections
we write, i : L i

Py=P(+ - O - +O).

=P+ — +| — +)+P(+ ~ —| — +4) §
v (18.2.4)
Similarly,
Ppe=P(O + -0 —+4) :
=P(+ + —| — =) +P(~ +,—| + —4), (182.5)
Ppe=P+ O —| - O+ %
=P(+ + —| — —H)+P(+ — —| — +4). (1826)

Given Egs. (18.2.4)~(18.2.6), the proof of Bell’s theorem easily fol-
lows. We add P, and P, to get,

Nuswn_lmvwn"ﬁﬁ._- - +_ - +|V+TA+ - |_ - ++v
+PH+ 4+ —| — —H)+P(— + —| + —4).
(182.7) .
We note that, using Eq. (18.2.6), Eq. (18.2.7) can be written as,
Pap +Ppe=Poe +P(+ — +| — + )
+P(— + — | + — ).

Classically, probabilities must be positive so that this implies,

(18.2.8)

field. The two
spin-1/2 particl
(protons) proce
the opposite - . o
directions where:theils
pass through th
Stern-Gerlach '

’

. : 18.2.9
an..TﬁwuNWmn. A v

This completes our proof of Bell's theorem.

18.3 Quantum calculation of the correlations in Bell’s
theorem

The quantum calculation for the probability of a spin-1 \N. @anow
described by a state vector |¥) passing through a SGA oriente

angle @ is given by .
Pg(6) = [O1T) P,
where the state |0) is formed by rotating a ‘spin up’ staie about the

y-axis

(18.3.1)

|6y = e~ or/2| 7). (1832)
Here we recall that
01 P 6p= 10 , (183.3)
==\1 o) PT\i o)’ 0 —1
and
1 =(° (18.34)
IN=1\9)" h=1{y)
We may rewrite (18.3.1) as
(18.3.5)

Py(6) = (¥16)(01F).

Now the projection operator |8)(0} is a useful quantity which we

define as

ng = |8){0]. Gw.w..@ ’
From Eq. (18.3.2) this may be written as

1ip = e~995/% 1)(1 |€%/2, (18.3.7)
and using the fact that

02 1) = cos 3| 1) +sinZ1 D 839
we find that mn..ﬁw.w.d becomes

(18.3.9)

g = WQ + 0,088 + oy sin ).
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Now from the previous discussi
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M_Bcﬁmnmo:m passage through SGAs at 6, and 6, cw@ﬁﬁ “W&%
escribed by the spin singlet state Eq. (18.1.1) is g ®

Pap = (P1alni)n1®1),

s (18.3.10)

where the projection operators nt" )
¢ ¢, and mg” correspond t i

and 2. After a little algebra, see Problem Mw.mu we %na o particles |

1
Py = —[1—cos(d, — 1. a2(0.—8
ab = 7 (0 —Bp)] = 5 sin” { - 5 v (18.3.11)

oEZ”M in our derivation of Bell's inequality (18.2.9) we considered
y three angles. Hence, we may use our quantum mechanical result

Py = mmFN AP lmw
3 ) . (183.12)

%ﬁormow. Swmﬁwﬁn Bell’s theorem is ‘obeyed’ by quantum mechanic
at 1s, is the ‘quantum version® of m%,m inequality obeyed? i

1 (0.6 1.,/8
1 (0=, -
5 sin A"N v+mmE~A aw vwwmmnNAﬁv.

(18.3.13)

To answer this we need onl i
y consider the angles 6, = 0, 8, =
6c = /2, so that Eq. (18.3.13) implies T % Mﬂ 4 aad

. T
2sin? = > sin? T ..
8 i w
or

0.15 > 0.25, (18.3.14)

which is false and therefe
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. ) .
Kwiat, Eberhard, Steinberg, and Chiao [1994] and Fry, Walther, and Li [1995]
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It may be noted that there are 2 number of other Bell inequalities.
One useful form of the Bell inequalities (which is usually tested in
experiments) is due to Clauser and Horne, and is given by (see Problem

18.1)
et (183.15)

where
. Pyo(0a 05)—Pra(6ay 85)+Pra(0, 60)+ Pr2(0%, )
s f , (183.16
Pi(07,) + Pa(65) A v

with Py(6,) and P(6,) being the passage probabilities for particles 1
and 2 to pass through the respective Stern—Gerlach apparati at angles
), and 6y, respectively.

In many experiments to test the Bell's inequalities, certain sym-
metries help to simplify the inequality (18.3.15). In these experiments
Py(6,) and P,(05) are independent of the angles @', and 8, respectively,
ie, Pi(6.) = Py and Py(6s) = P». In addition the joint probabilities
Pi2(0.,0) depend only on the magnitude of the difference of the an-
gles 6, and 8, ie., P12(04,0p) = P1o(10.— 85}). Suppose that we chose

8., 05, 0}, and @, in C.w.u.u.mv moEmﬁ

10— B4] = 16,5l = 10, — 51 = W_s_ —fy = (18317

We then have
3Pyp(a) — Pra(3e) , (18.3.18)
P+ P

Most experiments have been a varjation of an experiment in which
one measures the polarization correlations of the photons emitted
successively in an atomic cascade. In such experiments, 2 three-level
atom proceeds from, for example, a J =0 level to a J = 1 level, and
terminates in a J = 0 level which is the atomic ground.state. Typically
the atomic level scheme in calcium is employed where the 4p* *So
level is populated by laser radiation via two-photon excitation. It then
decays to the 4s% 1Sy state via the 4p4st Py level emitting two photons
of wavelengths 5513 A and 4227 A (see Fig. 18.3). Due to parity and
angular momentum conservation, there is a strong correlation in the
polarization of the emitted photons.

The schematics of the experiment are shown in Fig. 18.4. The pair
of correlated visible photons-are emitted in the atomic cascade in.a
well-stabilized high-efficiency source S. These photons pass through
the switching devices C; and Cs, followed by two polarizers in two
different orientations: 6, and 6; on side 1, and 6, and 6} on side 2. The

S(o) =
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* 5
—=———  3d4p'P,
— /
Avu Hmo -

4p4s'p,

A.mN Hmo

]
Z

Four-fold coincidence
monitoring

Qs>

photon multipliers PM1, PM2, PM1’, and PM?2’ and the coincidence
counting electronics measures the joint probabilities.

The two photons are distinguishable by their wavelengths or fre-
quencies. We assume the emitting atom to be at the origin and consider
the emitted photons which counter-propagate in the +y-directions. An
optical filter in the +y-direction transmits only photons of frequency
vy and a filter in the —y-direction transmits only photons of frequency
v2. As the transition is J =0 — J = 1 — J = 0, the initial and final
states of the atom have zero angular momentum and the same parity.
Similarly, the two-photon state must have zero angular momentum
and even parity. The state of the polarization of the two photons, after
the passage through the filters, is of the form

Fig. 184
Schematic of the;
photon correlation:
experiment in
two-photon’ cascz
emission to test.

Aspect, J. Daliba
and G. Roger, Phy,
Rev. Lett. 49, 18
(1982).)

T
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1
¥y) = ﬁ

where R and L refer to the photon polarizations being right m,ua
left circular and the subscripts 1 and 2 refer to the photons having
frequencies vy and vz, respectively. A change of basis to linear ?.&E.-
ization states |x), |z) allows the state vector (18.3.19) to be rewritten
as

(IR )Rz} + 1L} L2)), (18.3.19)

1
|;\IMA_NHV_N~V + [x1){x2))- (18.3.20)
The joint linear polarization measurement made by polarizers at angles
9, and 6, to the z-axis projects the state of Eq. (18.3.20) onto the two

polarization states

¥12) =

16) = cos Balz1) + sin Balx1), (18.3.21)
105) = cos Opiz2) + sin Bplx2). (18.3.22)

The quantum mechanical vao,cchQ for passage through the two
polarization analyzers is therefore given by

Pio(0a 05) = 1{0al{061F12)
= w c05(6a — B). (18.3.23)

Next we calculate Py(0) and Py(6). If the incident photon of mo.eugow
v is polarized along the x-axis, then the probability of passing the
polarizer oriented at an angle 8 with the x-axis, with'

[¥;) = cosf|x) +sin 6\z), (18.3.24)

is cos? 0. However, as the incident beam is unpolatized, we m<9,mm.w
over all values of 9, ie.,

1 2n
Py(0)=5- \% cos? 6d6

=1 (18.3.25)

2
Similarly

)= = . (18.3.26)

Py(0) = 5
We now substitute the values of Pi(8,65), P1(6), ,mna Py(6) from
Egs. (18.3.23), (18.3.25), and (18.3.26), respectively, in Eq. (18.3.18),
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from Bell’s theorem

spin-1/2 system, much as we want to do in quantum optics. In so
doing a hidden variable theory is suggested which is in agreement with
quantum theory insofar as the two-particle correlation experiments are
concerned, but is clearly nonlocal.

Let us begin by recalling the joint probability that particle 1 is
passed through a SGA oriented at an angle 8, to the vertical (+2)
direction and.that particle 2 is passed through a SGA oriented at an
angle 8y to the vertical, given by the correlation function

P1a(00, 65) = (R\ns n 1), (184.1)
and for the spin singlet we found (see Eq. (18.3.11))

P1a(0an05) = 11 —cos(f — Op)l. QM) (18.42)

Next we consider the same problem following Belinfante; we require

n/4

and obtain

3Pya(a) — Pr2(30t)
~u~ + ﬁu

MARV =

1
=503 cos® & — cos? 3).

For o = 22.5° this reduces to

S(22.5°) = 1.207,

in clear violation of the Bell’s ine i
. quality (18.3.15). In Fig. 1 i
plotted against «. It is seen that Bell’s inequali ) o b o

for 0 < o < 3zn/16.

18.4 Hidden variables from a quantum optical

perspective”

Belinfante in his scholarly book on hidden variable (HV) th

shows Emﬁ. HV theories are not so far from quantum Emowmonmmm
?W?c as might ca.anmE. Stimulated by Belinfante’s treatment and
observations, one is led to apply quantum distribution theory to the

This' section follows Scully [1983]; for further reading see Mermin [1993]

that in order to give hidden variable theories an air of possibility we
want them to yield the same results as quantum mechanics, at least in
the simplest cases. For example, in an unpolarized 'beam only 1/2 the
particles should pass through a given SGA. Further, the probability
of passing through a second SGA placed behind (and at an angle 6)
relative to the previous (vertical) SGA should be given by (1 [ml 1)
which is (1 + cos8)/2. Or, more generally, if a spin emerges from
a SGA oriented at an angle o and then passes into a SGA tipped
through an angle 6 relative to the vertical, then the likelihood that the
particle will emerge from the second SGA is given by

/2

(18.3.27)

i
(18.3.28) 5 {1+ cos(f — o)) (184.3)
Thus we might say that a ‘hidden variable’ « determined whether the
spin passed through the apparatus whose angle @ is determined by the
experimenter.
With this in mind we define the hidden variable probability function

ty (18.3.15) is violated

fig(e) = WE + cos(6 — o], (18.4.4)
as giving the probability of ‘simultaneous passage’ through the SGAs
oriented at 6 and .

We proceed now to consider the case where the two spins of our
singlet system of Fig. 18.2 (having polarization angles o and § for
spins 1 and 2) are correlated such that

I(e, B)dodB (18.4.5)




e R —

536 The EPR ; i
paradox, hidden variables, and Bell’ |
, and Bell’s theorem Problems ’ , | i
Now, following the same a; .
> & : pproach as before, and letti
the orientation of m, and B that of m® SmEmeuMuM Hﬂw”m e
orientation of the z-axis, this may be rewritte . v
A n as Pa
P(m®, m®) P12(64, 05)— P12(Ba, 84) 4+ P12(65, 0) +P12(62, 65)
| P1(67,) + P2(6)
with

Y Y R —oE
L Ag ¢ L% ++3) Py = [ AP0,
4

+m?|glmvum\wr$ﬁ+wlav
i?;i%f?ﬁ?@
+m?|e+m§®1elmﬁ.¥

. _
umxplmléTAgl |@v+w a-¢—2)

PalB) = \ APy, 05),

Pia(0,6) = \ APy (1 6)Po( 00

Here Pi(y,8,) and Pa(p,0) are the probabilities of
detecting particles 1 and 2 with the orientation of
Stern-Gerlach apparati in Fig. 18.2 at angles 6, and
05, respectively, where pu are the hidden variables
that describe: ‘completely’ the emission process in
the source, and dA is a measure of the variables .
Now P;(6,) and P»(6y) are the passage probabilities
for particles 1 and 2 to pass through the respective
Stern-Gerlach apparati oriented at angles 6/, and 6y,
respectively, and Pi2(6,,605) is the joint probability
that particles 1 and 2 will pass through their respec-
tive Stern-Gerlach apparati oriented at angles b, and
65, respectively. (Hint: See J. F. Clauser and M. A
Horne, Phys. Rev. D 10, 526 (1974).)

(18.B.7)
which is Eq. (18.4.20).

Problems k

18.1 (a) Consider four numbers X1, X2, X3, and x4 such that

. (a) Show that
0<x <1, (i=1,2,3,4). Show that the function

_; 0 .o (8
e~/ = cos Amv — iy sin AMV .

(b) Use this result to show that
Nl..mﬁ.\n_ ﬂv 3 _m_.eq_.\w

X = x1x0 — X1X4 + X3 + X34 — Xy — X3,

is constrained by the inequality

1 .
-l1<X<o. HMQ._.anOmm+o.me$.

183 ) For a spin singlet state

12 = @W: Tl =1 ln 1),

(b) If we choose x; = Pi(y,6,), x; = Pan ), x4 _

P1(p,6;), and x4 = Py(,0,) in the above inequality
then prove the following Bell’s inequality: u

show that

s<1, 1
(¥12|mg, 70, | ¥12) = NE —cos(6: — )1,
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where

(1
g,

1

3 [1+6Pcosb, + 0 sinb,],
@_1

ﬁs.v =5 [1+ 0P cosby + 6P sin 6).

Here o) and o{) are the Pauli matrices for the ith spin.

Show that
1

[¥)s = )\m: TitaT3) = 1 idals))

is an eigenstate of the operators 6{s@s{ and o{VsPa®
. y Ox -
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tber—Sudarshan ‘where
x+’a—aﬁ+,ﬁ—-) WEGI—GZ-
> the following If we choose
L W=0—0=0{— 6= 0]~ 0= (61~ 6)),
> ,_.‘glij',zo) one finds o .
_ B =3cos2y —cosby . (13.27)
When y = 22.5°, B = 2+/2 showing a clear violation of the Bell inequality |B| < 2.
(13.21) This violation has convincingly been demonstrated in the experiment of
Aspect [4]. In this experiment the polarisation analysers were essentially beam split-
ters with polarisation-dependent transmittivity. Ideally, one would like to have the
transmittivity (7F) for the modes a.. and b equal to one, and the reflectivity (R™)
for the modes a-. and b_ also equal to one. However, in the experiment the mea-
: that sured values were ;" = R] = 0.950, T,” =R} = 0.007 and T;" = T = 0.930,
T,” = R} =0.007. . :
|B-? The expression for E (0, 6;) is then modified:
_pG-T@ -
E(6,6) ~F(]11++1-'1—)(T2++T2_) cos2y (13.28)
(13.22) :
where F is a geometrical factor accounting for finite solid angles of detection. In this
experiment F = 0.984, and quantum mechanics would give for y =22.5°, B=2.7.
The observed value was 2.697 £ 0.015, in quite good agreement with quantum
5) (13.23) _theory and a clear violation of the Bell inequality. In Fig. 13.2 is shown a plot of
’ ' the theoretical and experimental results as a function of y. The agreement with
" quantum mechanics is better than 1%. It would appear in the light of this experiment
that realistic local theories for completing quantum mechanics are untenable.
(13.24)
Fig. 13.2 Correlation of
polaﬂsaﬁoqs as a function .s} ““
of the relative angle of the “
(13.25) polarisation analysers. The )
indicated errors are &2 stan- 2 e
: dard deviations. The dot- v : + 1
f i T R
mechanical prediction for the
9) must hold. experiment. For ideal polaris- ~.st .
for the state in ers the curves woudl reach ) e
the values 1. (From Aspect .
et al. Phys. Rev. Letis. 49, .

(13.26) 92 (1982)) L




