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Preface

Preface 2005

This collection of problems and exercises has been compiled specifically for the course
‘Quantum optics’ (‘Växelverkan mellan ljus och materia’). Many of the included
problems have been copied from the course textbook ‘The Quantum Theory of Light’
by Rodney Loudon. We have put them here in order to have one unified collection of
problems and also because some of them have been slightly altered in order to fit our
needs. A fair number of the problems are taken from previous exams and previous
assignments. This also means that this collection may well grow with time.

Ume̊a, May 8, 2006

Anders Kastberg and Mats Nylén
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Chapter 1

Phenomenological approach
to quantum optics

1:1. Prove that the maximum value 〈WT (ω)〉max of the energy density and the
frequency ωmax at which it occurs are related by

〈WT (ω)〉max =
ω2

max

π2c3
(3kBT − h̄ωmax)

Show by numerical trial and error or by drawing a rough graph that the
value of the frequency is given approximately by ωmax = 2.8kBT/h̄. This
is known as Wien’s displacement law.

1:2. The rate equation for a two-level atom in a field is:

dN1

dt
= −dN2

dt
= N2A+ (N2 −N1)B〈W 〉

Prove that the general solution of this is.

N1(t) =
{
N1(0)−N

Ws + 〈W 〉
Ws + 2〈W 〉

}
exp [−(A+ 2B〈W 〉)t] +N

Ws + 〈W 〉
Ws + 2〈W 〉

The solution for N2(t) follows from N = N1 +N2.

1:3. Derive expressions for the rates of change of the atomic excitation energy
as functions of time for

(a) an atom initially in its groundstate, illuminated by a beam of energy
density 〈W 〉,

(b) an atom initially in its continously illuminated state, with the beam
switched off at time t = 0.
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CHAPTER 1. PHENOMENOLOGICAL APPROACH TO QUANTUM OPTICS

1:4. A light beam that illuminates atoms is repeatedly turned on and off, with
the same duration τ for the on and off periods. The mean number of
excited atoms settles into a regular pattern after many on/off cycles have
taken place. Sketch the expected form of this regular variation and show
that the maximum number of excited atoms is

N2(t) = N
〈W 〉

Ws + 2〈W 〉
1− exp [−(A+ 2B〈W 〉)τ ]
1− exp [−2(A+B〈W 〉)τ ]

.

Investigate the limiting forms when τ →∞ and τ → 0 and explain them
in physical terms.

1:5. (a) An atom with transition frequency ω = 3 × 1015 s−1 and radiative
lifetime 10−7 s is illuminated by a light beam whose energy density
equals the saturation value. What fraction of the time does the atom
on average spend in its excited state in steady-state conditions?

What are the average numbers per second of:

(b) absorptions,

(c) spontaneous emissions and

(d) stimulated emissions?

1:6. Figure 1.1 shows the rates of absorption, stimulated emission and spontaneous
emission as a function of the mean value of the energy density of the
radiation. The curves are derived using only the phenomenological Einstein
theory and rate equations for a two-level system. No quantum mechanics
have been used. The energy density is given in units of the saturation
energy density.

Figure 1.1: Mean rates of the three Einstein transitions in units of the A
coefficient as functions of the radiative energy density.

Make an interpretation of the curves. What does it mean that they look
like they do? How will the corresponding populations in the upper and
the lower state depend on the energy density? How will an extra applied
beam of resonant light be affected if it interacts with this system, under
the conditions of high and low energy density respectively?
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Chapter 2

Semi-classical description of
light-atom interaction

2:1. Consider a two-level atom where

Ψ(r, t) = C1Ψ1(r, t) + C2Ψ2(r, t).

The coupled equations of motion for the coefficients C1 and C2, when the
atom interacts with a field are:

C2Ω cos(ωt) exp(−iω0t) = i
dC1

dt

C1Ω cos(ωt) exp(−iω0t) = i
dC2

dt

where Ω is the Rabi frequency.

Prove that |C1|2 + |C2|2 does not change with time, thus ensuring that
the normalization condition remains valid.

2:2. The optical Bloch equations can be written as:

dρ̃22

dt
= −dρ̃22

dt
= − i

2
Ω(ρ̃12 − ρ̃21)

dρ̃12

dt
=

dρ̃∗21
dt

=
i
2
iΩ(ρ̃11 − ρ̃22) + i(ω0 − ω)ρ̃12

Show that for the initial conditions ρ̃22(0) = 0 and ρ̃12(0) = 0 the solution
is ρ̃22(t) =

(
Ω

Ωgen

)
sin2

(
Ωgent

2

)
.

2:3. Prove that the Doppler and collisional contributions to the linewidth of
an atomic transition are equal at a gas density for which the volume per
atom is close to λd2, where λ is the optical wavelength of the transition
and d is the distance between the centers of the atoms during a collision.
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CHAPTER 2. SEMI-CLASSICAL DESCRIPTION OF LIGHT-ATOM INTERACTION

2:4. Consider a three-level atom, where the state can be described by:

Ψ(r, t) = C1Ψ1(r, t) + C2Ψ2(r, t) + C3Ψ3(r, t)

Assume that state Ψ1 and Ψ2 have odd parity, whereas Ψ3 has even parity,
and all relevant resonant radiation frequencies are present. Formulate the
coupled equations of motion for the coefficients C1, C2 and C3.

2:5. Assume a two level atom, where a resonant radiation field is suddenly
turned on. Show how an expression for the degree of excitation in the
upper level as a function of time can be derived from the optical Bloch
equations, when radiative damping is included in the model. The rotating-
wave approximation and the dipole approximation are allowed.

When solving this problem (and other problems involving the density
matrix for a two state system) it is convinient to introduce

X =
1
2

(ρ11 − ρ22)

Y = −1
2
i (ρ12 − ρ21) = −1

2
i (ρ12 − ρ∗12)

Z =
1
2

(ρ12 + ρ21) =
1
2

(ρ12 + ρ∗12)

which can be inverted as (we also use that ρ11 + ρ22 = 1)

ρ11 = X +
1
2

ρ22 =
1
2
−X

ρ12 = Z + iY
ρ21 = Z − iY

note that X , Y and Z are real quantities.

2:6. The equation of motion for the density matrix in the absence of spontaneous
emission is

dρ22

dt
= −iΩ cos(ωt) {exp(iω0t)ρ12 − exp(−iω0t)ρ21}

dρ12

dt
= iΩ cos(ωt) exp(−iω0t)(ρ11 − ρ22)

dρ11

dt
= −dρ22

dt
dρ21

dt
=

dρ∗12
dt

.

Find the solution to these under the initial condition ρ11(t = 0) = 1 and
ρ12(t = 0) = ρ21(t = 0) = ρ22(t = 0) = 0.

Compare your solution with the solution obtained when the rotating wave
approximation is made

ρ22(t) =
(

Ω
Ωgen

)2

sin2

(
1
2
Ωgent

)
where Ωgen is the generalised Rabi frequency

Ωgen =
√

(ω − ω0)2 + Ω2
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CHAPTER 2. SEMI-CLASSICAL DESCRIPTION OF LIGHT-ATOM INTERACTION

2:7. Consider a gas of Cs atoms, where the lifetime of a relevant excited
state is 30.5 ns. Assume no other broadening mechanisms other than
natural linewidth and Doppler braodening. At what temperature are the
homogeneous and inhomogeneous linewidths of the same order?

2:8. In the semi-classical approximation, spontaneous emission is not inherently
included in the model. The optical Bloch equations are derived from the
equations of motion for the coefficients Cj(t) that define the atomic wave
function in the Schrödinger representation. For a two level atom, C1(t)
and C2(t) are obviously defined through:

Ψ(r, t) = C1(t)Ψ1(r, t) + C2(t)Ψ2(r, t) .

The equations of motion for C1(t) and C2(t) are

i
dC1

dt
= Ωcosωt exp (−iω0t)C2(t)

i
dC2

dt
= Ωcosωt exp (iω0t)C1(t) ,

where Ω is the Rabi frequency, ω0 is the atomic resonance frequency, and
ω is the frequency of the light. From this, one can derive the optical Bloch
equations in the rotating wave approximation:

dρ̃22

dt
= −dρ̃11

dt
= − i

2
Ω(ρ̃12 − ρ̃21)

dρ̃12

dt
=

dρ̃∗21
dt

=
i
2
Ω(ρ̃11 − ρ̃22) + i(ω0 − ω)ρ̃12 ,

where ρij = CiC
∗
j and

ρ̃12 = exp {i(ω0 − ω)t}ρ12

ρ̃21 = exp {−i(ω0 − ω)t}ρ21

ρ̃ii = ρii .

(a) If one wants to include spontaneous emission into the semi-classical
optical Bloch equations, the deacy has to be artificially added to
the equations of motion. Show how this can be done and write the
optical Bloch equations with this decay included (but still in the semi-
classical model). The rotating wave approximation is still allowed.

(b) Sketch a graph showing how the population in the upper state varies
with time (based on the model derived in a). You do not have to solve
the OBE’s. Just outline the general behaviour and indicate roughly
a relevant time scale on the time axis. Assume that the initial state
is that the atom is purely in state |1〉 and the light is off. At t = 0,
the light turns on.

2:9. Suppose you have en ensemble of two-level atoms, with all atoms in the
ground state. If you wanted to excite all atoms to an equal coherent
superposition of the states |1〉 and |2〉, what would you do? The only tool
at your disposal is light. Explain in sufficient detail how you would design
your light field.
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CHAPTER 2. SEMI-CLASSICAL DESCRIPTION OF LIGHT-ATOM INTERACTION

2:10. Assume a two level system, where the general wave function is a linear
superposition:

Ψ(r, t) = C1(t)Ψ1(r, t) + C2(t)Ψ2(r, t) .

The time-dependent wave functions Ψj are eigenfunctions to the atomic
Hamiltonian (ĤA), with eigenvalues Ej , and ψj are the corresponding
stationary states:

Ψj(r, t) = ψj(r) exp (−iEjt/h̄) .

In the semi-classical picture, the light is treated as a classical electric field
and the total Hamiltonian is

Ĥ = ĤA + ĤI .

In the interaction Hamiltonian, we only include the odd-parity electric
dipole term. We also use the standard semi-classical definition of the
Rabi frequency, Ω:

h̄Ω cosωt = 〈1|ĤI|2〉 ,

where ω is the frequency of the light.

(a) Use the time dependent Schrödinger equation,(
ĤA + ĤI

)
Ψ(r, t) = ih̄Ψ(r, t) ,

to derive the equations of motion for the coefficients C1(t) and C2(t).

(b) Rewrite these equations of motion as the optical Bloch equations,
using the rotating wave approximation and the standard form for
the density matrix elements ρij = CiC

∗
j .

6



Chapter 3

Classical coherence theory

3:1 Consider a parallel light beam whose field contains a large number of
contributions similar to the stable wave depicted in the figure below, all
with the same frequency and wavevector but with a random distribution
of phase angles. Prove that the beam is first-order coherent at any pair of
space points.

t

E(t)

3:2 Consider the beam of light produced by excitation of two stable waves,
where the electric field is

E(z, t) = E1 exp(ik1z − iω1t) + E2 exp(ik2z − iω2t).

Prove that the light is first-order coherent at all pairs of points.

3:3 Consider a beam of light produced by excitation of two waves like in the
problem 3:2, but where both exhibit random amplitudes and phases. If
the average intensity is equally divided between the waves, prove that∣∣∣g(1)(τ)

∣∣∣ =
∣∣∣∣cos

{
1
2
(ω1 − ω2)τ

}∣∣∣∣ .
3:4 Consider light from a source that simultaneously has collision and doppler

broadening. Prove that the degree of first-order coherence is

g(1)(τ) = exp
{
−iω0τ − γcoll|τ | −

1
2
∆2τ2

}

7



CHAPTER 3. CLASSICAL COHERENCE THEORY

3:5 The Wiener-Khintchine theorem relates the spectrum and its degree of
first-order coherence through

F (ω) =
1
π

Re
∫ ∞

0

dτg(1)(τ) exp(iωτ)

(a) obtain the frequency spectrum of the excitation described in problem
3:3

(b) Prove that the Lorentzian lineshape function

FL(ω) =
γ/π

(ω0 − ω)2 + γ2

is correctly generated with use of the appropriate degree of first-order
coherence

(c) Prove that the Gaussian lineshape function

FG(ω) =
(
2π∆2

)−1/2
exp

{
−(ω0 − ω)2/2∆2

}
is correctly generated with use of the appropriate degree of first-order
coherence

3:6 Consider the single-mode chaotic light beam defined in problem 3:1 as a
randomly phased superposition of stable waves. Prove from first principles
that

g(2)(τ) = 2.

This implies that the coherence time is infinite.

3:7 Consider the light beam formed by superposition of two independent
stationary beams, labelled a and b, with a total cycle-averaged intensity

Ī(t) = Īa(t) + Īb(t).

Show that the overall degree of second-order coherence for a measurement
that does not distinguish the two beams is

g(2)(τ) =
Ī2
ag

(2)
a,a(τ) + Ī2

b g
(2)
b,b (τ) + 2ĪaĪb

(Īa + Īb)2
.

Use that g(2) can be expressed in terms of intensities as

g(2)(τ) =
〈Ī(t)Ī(t+ τ)〉

Ī2

where Ī is the long-term average intensity.

8



CHAPTER 3. CLASSICAL COHERENCE THEORY

3:8 Consider the classical electric field of a plane parallel light beam, made up
of independent contributions from a large ensemble of radiating atoms:

E(t) =
ν∑

i=1

Ei(t) ,

where ν is the number of atoms. The first order electric field correlation
function of this light is:

〈E∗(t)E(t+ τ)〉 = ν〈E∗
i (t)Ei(t+ τ)〉 ,

and, if there is no Doppler-broadening, the degree of first order coherence
is:

g(1)(τ) =
〈E∗(t)E(t+ τ)〉
〈E∗(t)E(t)〉

= exp (−iω0τ − γ|τ |) .

Here, γ is the total damping rate. What is the degree of second order
coherence for this light source as a function of the time delay τ? A hint is
that you can assume that the number of atoms is very large, which means
that some terms can be neglected.

3:9 Assume a large ensemble of small sources, that all radiate light with the
angular frequency ω. Take the classical limit (i.e. no quantum mechanical
effects) and sketch qualitatively the dependence of the first and second
order degrees of coherence as a function of the time delay, τ . Do this for the
two cases where the spectral broadening is dominated by collisional and
Doppler broadening, respectively. For each of these cases, what determines
the relevant time-scale for the variation (with τ) of g(1)(τ) and g(2)(τ)?

9



CHAPTER 3. CLASSICAL COHERENCE THEORY
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Chapter 4

Quantization of the light
field and of the interaction

4:1 Prove that

(n+ 3)(n+ 2)〈n|
(
â†

)3
â4â†|n〉 = (n− 1)(n− 2)〈n|â3

(
â†

)4
â|n〉

4:2 Prove the commutators[
â,

(
â†

)2
]

= 2â† and
[
â2, â†

]
= 2â

and in general show that when n is a positive integer[
â,

(
â†

)n
]

= 2
(
â†

)n−1
and

[
ân, â†

]
= 2ân−1

Hence show that [
â, exp

(
βâ†

)]
= β exp

[
β

(
â†

)]
,

where the operator exp
(
βâ†

)
is defined in term of its power-series expansion.

4:3 Prove that the n th excited state of the oscillator can be expressed in terms
of the ground state as

|n〉 = N̂(n)|0〉
where

N̂(n) =

(
â†

)n

√
n!

4:4 Determine the mean number of thermally-excited photons from

〈n〉 = Tr
{
ρ̂â†â

}
and hence show that the density operator for this case,

ρ̂ = {1− exp(−h̄ω/kBT )}
∑

n

exp(−nh̄ω/kBT )|n〉〈n|,

can be expressed as

ρ̂ =
∑

n

〈n〉n

(1 + 〈n〉)1+n
|n〉〈n|.
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CHAPTER 4. QUANTIZATION OF THE LIGHT FIELD AND OF THE INTERACTION

4:5 Show that the density operator for single-mode thermal light,

ρ̂ = {1− exp(−h̄ω/kBT )}
∑

n

exp(−nh̄ω/kBT )|n〉〈n|,

can be written in the equivalent form

ρ̂ = {1− exp(−h̄ω/kBT )}
∑

n

exp(−h̄ωâ†â/kBT ),

where the exponential is defined by its power-series expansion.

4:6 For a density operator

ρ̂ =
∑
{nkp}

P ({nkp}) |{nkp}〉 〈{nkp}|

where

P ({nkp}) =
∏
k

∏
p

〈nkp〉nkp

(1 + 〈nkp〉)n
kp

prove

(a) The normalisation property, Tr{ρ̂} = 1.
(b) Show that the total mean number of photons is

〈n〉 =
∑
k

∑
p

Tr
{
ρ̂â†kpâkp

}
=

∑
k

∑
p

〈nkp〉 .

4:7 A polarized parallel light beam has electric field operators

Ê+
T(r, t) =

∑
k

∑
p

ekp (h̄ωk/2ε0V )1/2
âkp exp [−iξk(r, t)]

Ê−
T(r, t) =

∑
k

∑
p

ekp (h̄ωk/2ε0V )1/2
â†kp exp [iξk(r, t)] .

Show that the intensity operator

Î(R, t) = ε0c
2
{
Ê−

T(R, t)× B̂+(R, t)− B̂−(R, t)× Ê+
T(R, t)

}
is equivalent to an operator of magnitude

Î(R, t) = 2ε0cÊ−
T (R, t)Ê+

T (R, t)

4:8 Use the second-quantized electric-dipole Hamiltonian in the interaction
picture

HED(t) = i
∑
k

∑
p

h̄gkp

{
π̂†âkp exp [i(ω0 − ωk)t+ ik ·R]

− â†kpπ̂ exp [−i(ω0 − ωk)t− ik ·R]
}

to work out the matrix-elements

〈nkp, i|HED(t)|n′k′p′ , j〉

where i, j denotes the atomic states (0 or 1); nkp and n′k′p′ denotes the
states of the radiation field.

Formulate the non-zero terms in form of easily understood diagrams.
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CHAPTER 4. QUANTIZATION OF THE LIGHT FIELD AND OF THE INTERACTION

4:9 Quantization of the electromagnetic field is often done by comparing a
quantum mechanical harmonic oscillator with expressions for the classical
field in the Coulomb gauge. The total energy of the classical field is a sum
of the energies of each individual mode:

ER =
∑
k

∑
p

ε0V ω
2
k

(
AkpA

∗
kp +A∗kpAkp

)
,

where Akp is the modulus of the classical vector potential for the mode
with wave-vector k and polarization p. The transversal part of the electric
field is related to the vector potential through

ET(r, t) = −∂A(r, t)
∂t

.

The Hamiltonian for one mode of a quantum mechanical harmonic oscillator
is

Ĥkp =
1
2
h̄ωk

(
âkpâ

†
kp + â†kpâkp

)
,

By doing the above mentioned comparison, derive an expression for the
quantum mechanical transversal electric field operator.

Hints:
The classical vector potential A(r, t) is a sum of contributions from all
modes of the cavity:

A(r, t) =
∑
k

∑
p=1,2

ekpAkp(r, t) ,

where ekp is a unit vector along the direction of polarization, and

Akp(r, t) = Akp exp (−iωkt+ ik · r) +A∗kp exp (iωkt− ik · r)

4:10 The second quantized electric-dipole interaction Hamiltonian can, in the
Schrödinger picture, be written as

ĤED = ie
∑
k

∑
p

∑
i,j

√
h̄ωk/2ε0V

p
p
·Dij{

âkp exp (ik ·R)− â†kp exp (−ik ·R)
}
|i〉〈j| .

(a) Rewrite this for a two-level system, using the two-level transition
operators π̂† and π̂.

(b) What different terms will the final expression contain, and what
physical processes do they represent?
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CHAPTER 4. QUANTIZATION OF THE LIGHT FIELD AND OF THE INTERACTION

4:11 In the interaction representation, the electric dipole interaction Hamiltonian
for a two-level transition can be written as:

ĤED(t) = i
∑
k

∑
p

h̄gkp{π̂†âkp exp [i(ω0 − ωk)t+ ik ·R]

−â†kpπ̂ exp [−i(ω0 − ωk)t− ik ·R]} ,

where the constant gkp includes constants and the projection of the dipole
moment:

gkp = e

√
ωk

2ε0h̄V
pk

pk
·D12 ,

and pk is the polarization of the field. Assume single mode field. Absorption
will now correspond to a transition from the state |n, 1〉 to |n − 1, 2〉.
Emission is instead a transition from |n, 2〉 to |n + 1, 1〉. Show how the
rates for absorption and emission depend on the number of photons in the
mode. Interpret the meaning of different terms.

14



Chapter 5

Single-mode quantized light

5:1 Evaluate the expectation value 〈n|(Ê(ξ))4|n〉 and show that it exceeds
the corresponding classical value with an amount 3/32, if the classical
field amplitude is taken to be E0 =

√
n+ 1/2.

5:2 An alternative approach to the coherent states is to take the eigenvalue
equation

â|α〉 = α|α〉

as the definition for a coherent state.

(a) Derive the expansion in terms of number states

|α〉 = exp (−1
2
|α|2)

∞∑
n=0

αn

√
n!
|n〉

from this starting point.

(b) Show that the creation operator, â†, has no right eigenstates.

5:3 A coherent state is defined by:

|α〉 = exp (−1
2
|α|2)

∞∑
n=0

αn

√
n!
|n〉 .

(a) What is the expectation value of the number of photons for this state
and what is the quantum mechanical uncertainty?

(b) The electric field operator can be written in a dimensionless form as:

Ê(χ) = Ê+(χ) + Ê−(χ) =
1
2
âe−iχ +

1
2
â†eiχ = X̂ cosχ+ Ŷ sinχ ,

where X̂ and Ŷ are the ”quadrature operators” and χ is the phase
angle:

χ = ωt− kz − π

2
.

What is the ”signal”, the ”noise” and the ”signal-to-noise ratio”, for
a coherent state?

15



CHAPTER 5. SINGLE-MODE QUANTIZED LIGHT

5:4 A coherent state is defined by:

|α〉 = exp (−1
2
|α|2)

∞∑
n=0

αn

√
n!
|n〉 .

(a) Show that the probabilty of finding n photons in the mode is

P (n) = e−〈n〉
〈n〉n

n!

(b) Use Sterling’s formula for the factorial to show that this is

P (n) ≈ 1√
2π〈n〉

exp
{
− (n− 〈n〉)2

2〈n〉

}
in what limit is this a good approximation?

5:5 Prove the operator relation

e−ÔâeÔ = â+
[
â, Ô

]
+

1
2!

[[
â, Ô

]
, Ô

]
+ . . .

by power-series expansion of the exponentials. Hence show that

Ŝ†(ζ)âŜ(ζ) = â cosh s− â†eiϑ sinh s

where the squeeze operator, Ŝ is

Ŝ(ζ) = exp
(

1
2
ζ∗â2 − 1

2
ζ

(
â†

)2
)

and ζ is the complex squeeze parameter

ζ = s exp (iϑ)

5:6 The squeezed vacuum state is defined by

|ζ〉 = Ŝ(ζ)|0〉

(see problem 5:5 for definitions). Show

(a) that the mean-square number of photons is

〈n2〉 = 3 sinh4 s+ 2 sinh2 s = 3〈n〉2 + 2〈n〉,

(b) the eigenvalue relation

(â cosh s− â†eiϑ sinh s)|ζ〉 = 0

16



CHAPTER 5. SINGLE-MODE QUANTIZED LIGHT

5:7 The electric field operator can be written in dimensionless form as:

Ê(χ) = Ê+(χ) + Ê−(χ) =
1
2
âe−iχ +

1
2
â†eiχ = X̂ cosχ+ Ŷ sinχ ,

where X̂ and Ŷ are the ”quadrature operators” and χ is the phase angle:

χ = ωt− kz − π

2
.

A single-mode quadrature squeezed state is defined by:

|α, ζ〉 = D̂(α)Ŝ(ζ)|0〉 ,

where D̂(α) is the coherent-state displacement operator, and Ŝ(ζ) is the
squeeze operator. ζ is the complex squeeze parameter with amplitude and
phase defined by:

ζ = s exp (iϑ)

Some relations of these two operators are expressed in the following relations:

Ŝ†(ζ)D̂†(α)âD̂(α)Ŝ(ζ) = â cosh s− â† exp (iϑ) sinh s+ α

and

Ŝ†(ζ)D̂†(α)â†D̂(α)Ŝ(ζ) = â† cosh s− â exp (−iϑ) sinh s+ α∗ .

Derive the signal, the noise, and the signal-to-noise ratio for these squeezed
coherent states. How do the results compare with an ordinary coherent
state?

5:8 A single photon enters one of the input arms in a Mach-Zender interferometer.
The other input is blocked. The two beam splitters in the interferometer
are identical. The single-photon input state can be written as

|1〉1|0〉2 = â†1|0〉 .

(a) Write an expression for the state of one of the output arms.

(b) What is the expectation value of the number of photons in this output
arm, expressed in the beam splitters reflection and transmission coeff-
icients?

5:9 For arbitrary one-arm input (i.e., the input state is |arb〉1|0〉2) prove the
following relations for the output states

〈n3(n3 − 1)〉 = |R|4〈n1(n1 − 1)〉
〈n4(n4 − 1)〉 = |T |4〈n1(n1 − 1)〉

〈n3n4〉 = |R|2|T |2〈n1(n1 − 1)〉,

hence show that〈
(n3 − n4)

2
〉

=
(
|R|2 − |T |2

)2 〈n1(n1 − 1)〉+ 〈n1〉

17



CHAPTER 5. SINGLE-MODE QUANTIZED LIGHT
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Chapter 6

Multi-mode quantized light

6:1 Derive the following expression for the first-order coherence of a parallel
beam of thermal light

g(1)(τ) =
∑

k ωk〈nk〉 exp(−iωkτ)∑
k ωk〈nk〉

This expression holds for all varieties of multimode light whose components
have uncorrelated field amplitudes.

6:2 Prove the relation
g(2)(τ) = 1 + |g(1)(τ)|2

for chaotic light, where the light is assumed to excite a large number of
modes.

6:3 The continuos-mode creation and destruction operators fulfill[
â(ω), â†(ω′)

]
= δ(ω − ω′)

(a) Derive the expressions for the electromagnetic field operators, Ê+
T ,

Ê−
T , B̂+ and B̂− in terms of â(ω) and â†(ω). Explain any necessary

assumptions.

(b) Show that the electromagnetic field Hamiltionan, defined from

ĤR =
∫

dV
[
ε0ÊT · ÊT + µ−1

0 B̂ · B̂
]

becomes

ĤR =
∫ ∞

0

dωh̄ωâ†(ω)â(ω) + vacuum energy

Again, explain any necessary assumptions.
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CHAPTER 6. MULTI-MODE QUANTIZED LIGHT

6:4 Prove the commutation relations[
â(ω),

(
â†ξ

)n]
= nξ(ω)

(
â†ξ

)n−1

,[
â(t),

(
â†ξ

)n]
= nξ(t)

(
â†ξ

)n−1

.

where

â†ξ =
∫

dωξ(ω)â†(ω) =
∫

dtξ(t)â†(t)

Also show that the continuous mode number state

|nξ〉 =
1√
n!

(
â†ξ

)n

|0〉

is an eigenstate to the number-operator, i.e., show that

n̂ |nξ〉 = nξ |nξ〉

where

n̂ =
∫

dωâ†(ω)â(ω) =
∫

dtâ†(t)â(t).

6:5 Explain in words, and if you want with a drawn figure, the meaning
of ”bunching” and ”anti-bunching”, and explain when these phenomena
occur. What is the connection between these concepts and the second
order coherence? Where does chaotic and coherent light fit into this?
Does these phenomena have classical analogues, or are any of them purely
quantum mechanical?

6:6 A photon pair state is created that excites two different continuous-mode
fields. These two photons are arranged such that they excite the two
different input arms in a beam splitter. Thus, the input state of the beam
splitter can be written as

|(11, 12)β〉 =
∫ ∫

β(t, t′)â†1(t)â
†
2(t

′)dtdt′ . (6.1)

The reflectance of the beam splitter is |R|2 and the transmittance is
|T |2. R and T are respectively the complex reflection and transmission
coefficients.

(a) Rewrite eq. (6.1) in a form where it contains the creation operators
for the output arms instead of those for the input arms.

(b) It is a 50:50 beam splitter, which means that the reflectance and the
transmittance are equal (|R|2 = |T |2 = 1/2). Moreover, the two
states overlap perfectly in time. In other words, the joint overlap
integral is unity:

|J |2 =
∫ ∫

β∗(t, t′)β(t′, t)dtdt′ = 1 .

For this particular case, the probability is for finding one photon in
each of the two output arms at a measurement is zero. Interpret this
result. What does it mean, and why does this happen?
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CHAPTER 6. MULTI-MODE QUANTIZED LIGHT

6:7 The photon pair-state creation operator is

P̂ †
βaa =

1√
2

∫
dω

∫
dω′β(ω, ω′)â†(ω)â†(ω′)

show that the mean photon flux is

f(t) = 2
∫

dt′|β(t, t′|2.

6:8 Assume that a pair state is fed into a beam splitter, in a ways such that
one photon excites one of the input arms, and the other photon excites
the other. Show what the probability is that one will detect both photons
in the same output arm, and what the probability is that one instead
will detect one photon in each output arm. Explain all the steps in your
derivation.

How can one interpret the result?
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CHAPTER 6. MULTI-MODE QUANTIZED LIGHT

6:9 The Casimir force can be seen as a reduction of the vacuum energy. Derive
the expression for the Casimir force acting on two large parallell plates,
with area A, of perfect conductors, at a distance a from each other.

(a) The possible wave-vectors in the z direction is

kn =
nπ

a

leading to possible frequencies

ωn = c

√
k2

x + k2
y +

n2π2

a2
, for n = 1, 2, . . .

show that the vacuum-energy becomes

Ecav(a)
A

=
h̄

2
2

∫
dkxdky

(2π)2

∞∑
n=1

ωn

(b) Show that the vacuum-energy of the same region in the absence of
one the plates can be written as

Efree(a)
A

=
h̄

2
2

∫
dkxdky

(2π)2

∫ ∞

0

dnωn

(with ωn given by the same expression as before.)
Hint: Imagine that the plates are L apart and let L go to infinity.

(c) Rewrite the integral using polar coordinates to show that

Ecav(a)
A

=
h̄c

2π

∞∑
n=1

∫ ∞

0

qdqwn(q)

and
Efree(a)
A

=
h̄c

2π

∫ ∞

0

dn
∫ ∞

0

qdqwn(q)

where

wn(q) =

√
q2 +

n2π2

a2

(d) Introduce a regularization parameter µ so that these expressions
becomes

Ecav(a)
A

=
h̄c

2π

∞∑
n=1

∫ ∞

0

qdqwn(q)e−µwn(q)

and
Efree(a)
A

=
h̄c

2π

∫ ∞

0

dn
∫ ∞

0

qdqwn(q)e−µwn(q)

show that

δE
A
≡ lim

λ→0

(
Ecav(a)
A

− Efree(a)
A

)
= − h̄cπ2

3 · 240a3

and thus that the pressure generated is

P = − h̄cπ2

240a4

(e) Consider two 10 nm thick plates of gold, at what distance is the
Casimir force equal to gravitanional force? equal to 1 atm? Could
this have any consequences for nanoelectromechanical systems (NEMS)?
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Chapter 7

Absorption and
amplification of light by
matter

7:1 Derive the mean -photon-number rate-equation

d〈n〉
dt

= Γst {N2 + (N2 −N1)〈n〉}

7:2 Derive an equation of motion for the second factorial moment of the
photon-number distribution in the form

d
dt

[
〈n(n− 1)〉 − 2〈n〉2

]
= −2Γst(N1 −N2)

[
〈n(n− 1)〉 − 2〈n〉2

]
where N1 and N2 are the solutions to

dN1

dt
= −dN2

dt
= N2Γsp + (N2 −N1)Γst〈n〉

7:3 Prove that

P (n) =
∞∑

l=n

P0(l)
l!

(l − n)!n!
(1− p)l−npn

with
p = exp(−NΓstt)

is a solution to

dP (n)
dt

= NΓstt [−nP (n) + (n+ 1)P (n+ 1)] .
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CHAPTER 7. ABSORPTION AND AMPLIFICATION OF LIGHT BY MATTER

7:4 A three-level system, as in fig. 7.1 is used in order realize a laser.

| 1  Ò

| 0  Ò

| 2  Ò

Gst nGsp

A10

R

Figure 7.1: Atomic energy-level scheme for a three-level laser showing the
relevant transition rates.

The rates indicated in the figure are the rate of pumping from |0〉 to
|2〉, R (|0〉 ↔ |2〉 is dipole forbidden, so this pumping is done with for
example electron bombardment); the spontaneous decay from |1〉 to |0〉,
A10; the spontaneous emission rate from |2〉 to |1〉, Γsp; and the rates
for absorption and stimulated emission between states |1〉 and |2〉, Γstn.
Another important rate is the loss of cavity photons due to reflections in
the output mirrors, Γcav. Of all these rates, A10 is by far greater than all
the other.

(a) Draw an energy-level diagram for the photons in the lasing mode.
Indicate by arrows and symbols the relevant transitions that contribute
to the probability of having n photons in the lasing mode.

(b) Write down rate equations for the probability of having n photons in
the lasing mode, and for the population in state |2〉.

(c) What is the population of state |2〉 at steady-state? How does it
depend on n, and how can that be interpreted physically?

7:5 Prove that the above-threshold normalized photon-number distribution is
given by

P (n) =
exp

[
−(n− 〈n〉)2/2(ns + 〈n〉)

]
[2π(ns + 〈n〉)]2

to a very good approximation.

7:6 Prove that the output signal operators defined by

âL(ω) = exp
{[

iη(ω)(ω/c)− 1
2
K(ω)

]
L

}
â0(ω)

+i
√
K(ω)

∫ L

0

dz exp
{[

iη(ω)(ω/c)− 1
2
K(ω)

]
(L− z)

}
b̂(z, ω)

fullfils the standard commutation relation[
âL(ω), â†L(ω′)

]
= δ(ω − ω′)
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CHAPTER 7. ABSORPTION AND AMPLIFICATION OF LIGHT BY MATTER

7:7 The output noise is represented by the operator b̂N , defined by

b̂N (ω) = i
√
G(ω)

∫ L

0

dz exp
{[

iη(ω)(ω/c) +
1
2
G(ω)

]
(L− z)

}
b̂†(z, ω)

so that

âL(ω) = exp
{[

iη(ω)(ω/c) +
1
2
G(ω)

]
L

}
â0(ω) + b̂N (ω)

show that [
b̂N (ω), b̂†N (ω′)

]
= − [exp(G(ω)L)− 1] δ(ω − ω′)

7:8 The equation of motion for âkp can be formally integrated to give

âkp(t) = exp(−iωkt)
{
âkp(0)− gkp

∫ t

0

dt′π̂(t′) exp(−ik ·R + iωkt
′)

}
show that the commutation relation[

âkp(t), â
†
k′p′(t)

]
= δk,k′δp,p′

is fullfilled to order g2
kp.

7:9 The source-field expression expresses the transversal electric field radiated
by an excited atom. The modulus of this field is

Êsf = Ê+
sf + Ê−

sf = − eω2
0D12 sinΘ

4πε0c2|r−R|
π̂(t− |r−R|

c
) + h.c.

where D12 and Θ are the magnitude and the direction of the atomic dipole
moment, R is the position of the atom, and π̂ is the atomic transition
operator, |1〉〈2|.The general expressions for the first and second order
coherence are

g(1)(r1, t1;r2, t2) = 〈
Ê−

T (r1, t1)Ê+
T (r2, t2)

〉
√〈

Ê−
T (r1, t1)Ê+

T (r1, t1)
〉 〈

Ê−
T (r2, t2)Ê+

T (r2, t2)
〉

g(2)(r1, t1;r2, t2) =〈
Ê−

T (r1, t1)Ê−
T (r2, t2)Ê+

T (r2, t2)Ê+
T (r1, t1)

〉
〈
Ê−

T (r1, t1)Ê+
T (r1, t1)

〉 〈
Ê−

T (r2, t2)Ê+
T (r2, t2)

〉 .

(a) Use this in order to obtain the two orders of coherence for the emission
from an excited atom. The expression should only contain atomic
transition operators.

(b) What are the values of these two orders of coherence for zero time-
delay? Interpret that result very briefly.
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7:10 Use the quantum theory of direct detection to show that the measured
degree of second-order coherence of the light radiated by a single driven
atom for zero time delay is

g
(2)
D (0) =

1− 2γspT + 2γ2
spT

2 − exp(−2γspT )
2γ2

spT
2

.
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Chapter 8

Scattering of light by
matter and light induced
fluorescence

8:1 Here is the first problem.

8:2 Here is an itemized problem:

(a) this the first part of the question.

(b) this is the second,

(c) and this is the third.

8:3 This is the third problem.

8:4 Here is a problem that includes a figure, except that that part has been
commented away.

8:5 Here is a problem that contains an equation:

F (t) ∝ 1
τ0
NS1(t)
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