Statistical Physics 2, 7.5 hp Home examination

Emil Lundh
Department of Physics, Umeả University

III. SCALING RELATIONS

Problem 3 out of 3

Consider a magnetic system at $T=T_{C}$ (that is, $t=0$). As the external field h goes to zero we expect the correlation length to diverge with a critical exponent ν_{H},

$$
\xi(0, h) \sim|h|^{-\nu_{H}},
$$

and furthermore we make the ansatz for the correlation function

$$
g(r, t=0, h) \sim \frac{1}{r^{d-2+\eta_{H}}} e^{-r / \xi} .
$$

Finally we assume that the susceptibility diverges for vanishing h with an exponent γ_{H}, that is,

$$
\chi(0, h) \sim|h|^{-\gamma_{H}} .
$$

(a) Express γ_{H} in terms of ν_{H}, d, and η_{H}.
(b) Using the scaling ansatz (6.86) in the book, derive the scaling relation $\gamma_{H} \delta=\gamma / \beta$.

Hint: Compute the susceptibility using the ansatz for the correlation function.

Deadline Monday 23/5. Submissions by pdf file to lundh@tp.umu.se or neat handwriting.

