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Cold atoms: a hot topic

@ Quantum fluids
@ Monatomic gases, N = 10* - 10°

@ Trapped with magnetic fields, manipulated with lasers

@ Cooled to nK
temperatures

@ System size: a few
m
o Lifetime: seconds

@ Detection: Photo of
actual density!
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Quantum theory

Quantum many-body physics

@ We want to investigate what phenomena can arise due to
quantum effects in a many-body system.

@ 3N-dimensional space: the problem scales exponentially with
number of particles. (L3V)

@ Historically: Solid materials, nuclei, or liquid helium. Now
have quantum gases - more versatile
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Quantum theory

Textbook derivation of BEC
(blackboard lecture)

Emil Lundh Quantum Fluids



Quantum theory

Brief history of quantum fluids

Emil Lundh Quantum Fluids



Quantum theory

Brief history of quantum fluids

@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

@ 1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

@ 1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

@ 1930s: Landau theory of superfluid *He

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

@ 1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

@ 1930s: Landau theory of superfluid *He
@ 1948: Bogoliubov's theory of the dilute Bose gas

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

@ 1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

@ 1930s: Landau theory of superfluid *He
@ 1948: Bogoliubov's theory of the dilute Bose gas

@ 1970s: First idea about laser cooling

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

@ 1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

@ 1930s: Landau theory of superfluid *He
@ 1948: Bogoliubov's theory of the dilute Bose gas

@ 1970s: First idea about laser cooling

@ 1995: BEC in dilute gases. 8"Rb (Cornell, Wieman); 23Na
(Ketterle)

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

@ 1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

@ 1930s: Landau theory of superfluid *He
@ 1948: Bogoliubov's theory of the dilute Bose gas

@ 1970s: First idea about laser cooling

@ 1995: BEC in dilute gases. 8"Rb (Cornell, Wieman); 23Na
(Ketterle)

@ 2007: BEC in polaritons in semiconductors (Snoke)

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1911: Superconductivity in Hg: Kamerlingh Onnes
@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

@ 1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

@ 1930s: Landau theory of superfluid *He
@ 1948: Bogoliubov's theory of the dilute Bose gas

@ 1970s: First idea about laser cooling

@ 1995: BEC in dilute gases. 8"Rb (Cornell, Wieman); 23Na
(Ketterle)

@ 2007: BEC in polaritons in semiconductors (Snoke)

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1911: Superconductivity in Hg: Kamerlingh Onnes
@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

1930s: Landau theory of superfluid *He

1948: Bogoliubov's theory of the dilute Bose gas
1973: Superfluidity in 3He: Fermi superfluid
1970s: First idea about laser cooling

@ 1995: BEC in dilute gases. 8"Rb (Cornell, Wieman); 23Na
(Ketterle)

@ 2007: BEC in polaritons in semiconductors (Snoke)

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1911: Superconductivity in Hg: Kamerlingh Onnes
@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

1930s: Landau theory of superfluid *He

1948: Bogoliubov's theory of the dilute Bose gas
1973: Superfluidity in 3He: Fermi superfluid

1970s: First idea about laser cooling

1986: High-Tc superconductivity: Bednorz and Mller

1995: BEC in dilute gases. 8’Rb (Cornell, Wieman); 2 Na
(Ketterle)

@ 2007: BEC in polaritons in semiconductors (Snoke)

Emil Lundh Quantum Fluids



Quantum theory
Brief history of quantum fluids

@ 1911: Superconductivity in Hg: Kamerlingh Onnes
@ 1937: Superfluidity in *He: Kapitza; Allen and Misener

1938: London explains superfluidity in terms of BEC.
(However, *He is a liquid!)

1930s: Landau theory of superfluid *He

1948: Bogoliubov's theory of the dilute Bose gas
1973: Superfluidity in 3He: Fermi superfluid

1970s: First idea about laser cooling

1986: High-Tc superconductivity: Bednorz and Mller

1995: BEC in dilute gases. 8’Rb (Cornell, Wieman); 2 Na
(Ketterle)

2003: BCS transition for cold Fermi atoms (Jin)
@ 2007: BEC in polaritons in semiconductors (Snoke)
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Quantum theory

Theory of quantum fluids

Phenomena close to T =0
Ground state — mean-field approximation
Lowest excited many-body states: Bogoliubov theory

Minimize free energy or use Boltzmann's law to deduce
finite-T properties
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Quantum theory

Gross-Pitaevskii equation
(blackboard lecture)
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Quantum theory
Gross-Pitaevskii equation

2
,ha;’ h v2w+ V(r)V + Up|W[?W

GPE is used to S|mu|ate:
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Quantum theory

Gross-Pitaevskii equation

Ground state in various traps ...

(BEC in a toroidal trap; work in progress)
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Quantum theory

Gross-Pitaevskii equation

. vortex lattices in rotated BECs ...

Theory

Experiment
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Quantum theory

Gross-Pitaevskii equation

... More vortices (now in 3D) ...

R T PN
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Quantum theory

Gross-Pitaevskii equation

. coherence, correlations, interference fringes ...

(b)

| —
| —
—
| —
e —
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Quantum theory

Gross-Pitaevskii equation

. systems of several condensates ...

Rayleigh-Taylor instability in an interface between two condensates
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Quantum theory

Gross-Pitaevskii equation

...even finite-temperature physics and critical phenomena
(with modifications)
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Quantum theory

End of lecture

Thank you for your attention

Emil Lundh Quantum Fluids



	Quantum theory

