Cold atoms 3: Optical lattices

Emil Lundh

Department of Physics
Umeå University
lundh@tp.umu.se

April 15, 2010

Today's lecture

States that are not simple Bose-Einstein condensates:

- Bose glass
- Mott insulators

Optical potentials

How does an atom interact with the E-field of a light wave?

Optical potentials

How does an atom interact with the E-field of a light wave? An atom is neutral.

Optical potentials

How does an atom interact with the E-field of a light wave?
An atom is neutral.
Nevertheless, an E-field induces a dipole moment.

Optical potentials

How does an atom interact with the E-field of a light wave?
An atom is neutral.
Nevertheless, an E-field induces a dipole moment.
Second-order perturbation theory:

$$
V(r) \propto|E(r)|^{2} \propto I(r)
$$

I is the irradiance

Standing wave

b

Standing wave

Optical lattice: $V(r)=V_{01} \cos \overrightarrow{k_{1}} \cdot \vec{r}+V_{02} \cos \overrightarrow{k_{2}} \cdot \vec{r}$

Optical lattices

Generally: Several laser beams create interference patterns in 1, 2, or 3 dimensions.

Lattice plus trap

Optical lattice: periodicity Magnetic trap: Confinement

Disorder

- Cold atoms are clean and controllable systems.

Disorder

- Cold atoms are clean and controllable systems.
- Therefore ideal to study disorder - in a controlled way!

Disorder

- Cold atoms are clean and controllable systems.
- Therefore ideal to study disorder - in a controlled way!
- Disorder: Of interest in solid-state systems (impurities, lattice defects)

Disorder

- Cold atoms are clean and controllable systems.
- Therefore ideal to study disorder - in a controlled way!
- Disorder: Of interest in solid-state systems (impurities, lattice defects)
- Fundamental interest: Quantum mechanics + random potential

Disorder

- Cold atoms are clean and controllable systems.
- Therefore ideal to study disorder - in a controlled way!
- Disorder: Of interest in solid-state systems (impurities, lattice defects)
- Fundamental interest: Quantum mechanics + random potential
- New quantum phase: The Bose glass

Disorder with optical potentials

Alternative 1: Laser speckle Light diffracted through roughened glass

gives a random pattern

Disorder with optical potentials

Alternative 2: Quasiperiodic potential

Disorder with optical potentials

Alternative 2: Quasiperiodic potential Simple 1D pattern:

$$
V(x)=A \cos k_{1} x+B \cos k_{2} x
$$

Disorder with optical potentials

Alternative 2: Quasiperiodic potential
Simple 1D pattern:

$$
V(x)=A \cos k_{1} x+B \cos k_{2} x
$$

- is periodic if k_{1} / k_{2} is a rational number, $k_{1} / k_{2}=m / n$

Disorder with optical potentials

Alternative 2: Quasiperiodic potential
Simple 1D pattern:

$$
V(x)=A \cos k_{1} x+B \cos k_{2} x
$$

- is periodic if k_{1} / k_{2} is a rational number, $k_{1} / k_{2}=m / n$
- is quasiperiodic - never repeats - if k_{1} / k_{2} is irrational.

Disorder with optical potentials

Alternative 2: Quasiperiodic potential
Simple 1D pattern:

$$
V(x)=A \cos k_{1} x+B \cos k_{2} x
$$

- is periodic if k_{1} / k_{2} is a rational number, $k_{1} / k_{2}=m / n$
- is quasiperiodic - never repeats - if k_{1} / k_{2} is irrational.
(In practice: make sure that k_{1} / k_{2} is not close to a ratio of small integers such as $2 / 3$ or $1 / 4$.)

Disorder with optical potentials

Alternative 2: Quasiperiodic potential
Simple 1D pattern:

$$
V(x)=A \cos k_{1} x+B \cos k_{2} x
$$

- is periodic if k_{1} / k_{2} is a rational number, $k_{1} / k_{2}=m / n$
- is quasiperiodic - never repeats - if k_{1} / k_{2} is irrational.
(In practice: make sure that k_{1} / k_{2} is not close to a ratio of small integers such as $2 / 3$ or $1 / 4$.)
Popular choice: The golden ratio $k_{1} / k_{2}=(1+\sqrt{5}) / 2$

Quasiperiodic potential in 1D

Quasiperiodic potential in 2D

Anderson localization

A quantum particle in a random potential will not propagate: localized.

Anderson localization

A quantum particle in a random potential will not propagate: localized.
No trapping (potential can be lower than energy of particle) An interference effect.

Anderson localization

A quantum particle in a random potential will not propagate: localized.
No trapping (potential can be lower than energy of particle) An interference effect.
Periodic potentials: Bloch waves \rightarrow transport.

Anderson localization

A quantum particle in a random potential will not propagate: localized.
No trapping (potential can be lower than energy of particle) An interference effect.
Periodic potentials: Bloch waves \rightarrow transport.
Non-periodic potentials: Interference effects \rightarrow localization.

Anderson's argument

Constructive interference between a path and its reverse.

Anderson's argument

Constructive interference between a path and its reverse. If not periodic, then no constructive interference for other paths only those that lead back to point of origin!

Exponential localization

Wavefunctions decay exponentially at long distances:
Localized eigenstates.

Observation of Anderson localization

- Not in solids: Mean free path too short
- Must construct artificial system in order to see A.L.
- Light: 1997
- BEC: 2008
- Very dilute BEC: neglect interactions.
- AL is a single-particle phenomenon.

Experiment, Florence

time

Roati et al., Florence. Quasiperiodic potential in 1D

Experiment, Paris

Billy et al., Paris.
 Speckle potential in 1D

Bose Glass

What about interacting Bose gases?

Bose Glass

Bose Glass

- A quantum phase was predicted, the "Bose glass" phase.

Bose Glass

- A quantum phase was predicted, the "Bose glass" phase.
- For the experts: Gapless but not superfluid.

Bose Glass

- A quantum phase was predicted, the "Bose glass" phase.
- For the experts: Gapless but not superfluid.
- Loosely speaking: System is broken up into several small BEC, whose phases are mutually random

Bose Glass

Define the particle-particle correlation function

$$
g\left(r, r^{\prime}\right)=\int d r_{2} \cdots d r_{N} \psi^{*}\left(r, r_{2}, \ldots, r_{N}\right) \psi\left(r^{\prime}, r_{2}, \ldots, r_{N}\right)
$$

Bose Glass

Define the particle-particle correlation function

$$
g\left(r, r^{\prime}\right)=\int d r_{2} \cdots d r_{N} \psi^{*}\left(r, r_{2}, \ldots, r_{N}\right) \psi\left(r^{\prime}, r_{2}, \ldots, r_{N}\right)
$$

"If I know the phase at point r, how well can I predict the phase at point r^{\prime} ?"

Bose Glass

Define the particle-particle correlation function

$$
g\left(r, r^{\prime}\right)=\int d r_{2} \cdots d r_{N} \psi^{*}\left(r, r_{2}, \ldots, r_{N}\right) \psi\left(r^{\prime}, r_{2}, \ldots, r_{N}\right)
$$

"If I know the phase at point r, how well can I predict the phase at point r^{\prime} ?"
BEC: $g\left(r, r^{\prime}\right) \sim$ const at large $r-r^{\prime}$
Bose glass: $g\left(r, r^{\prime}\right) \sim e^{-\left|r-r^{\prime}\right|}$ exponential decay

Bose glass: Density

Cetoli and Lundh, 2010

Bose glass: Correlations

Cetoli and Lundh, 2010

Bose glass in 2D

Cetoli and Lundh, to be published

Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical lattice (now a periodic one!)

Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical lattice (now a periodic one!)
Well described by a discrete lattice Hamiltonian!

Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical lattice (now a periodic one!)
Well described by a discrete lattice Hamiltonian!
Probability of tunneling between wells: $J \sim e^{-V_{0}^{3 / 2}}$
(where V_{0} is height of lattice potential)

Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical lattice (now a periodic one!)
Well described by a discrete lattice Hamiltonian!
Probability of tunneling between wells: $J \sim e^{-V_{0}^{3 / 2}}$
(where V_{0} is height of lattice potential)
Interaction between particles in same well: $U \sim U_{0} V_{0}^{3 / 2}$

Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical lattice (now a periodic one!)
Well described by a discrete lattice Hamiltonian!
Probability of tunneling between wells: $J \sim e^{-V_{0}^{3 / 2}}$
(where V_{0} is height of lattice potential)
Interaction between particles in same well: $U \sim U_{0} V_{0}^{3 / 2}$

Hubbard model

In second quantization, Hamiltonian is written in terms of

Hubbard model

In second quantization, Hamiltonian is written in terms of

- Creation operator a_{j}^{\dagger} : Adds a particle to j 'th well

Hubbard model

In second quantization, Hamiltonian is written in terms of

- Creation operator a_{j}^{\dagger} : Adds a particle to j 'th well
- Annihilation operator a_{j} : Takes away a particle from j 'th well

Hubbard model

In second quantization, Hamiltonian is written in terms of

- Creation operator a_{j}^{\dagger} : Adds a particle to j 'th well
- Annihilation operator a_{j} : Takes away a particle from j 'th well
- Commutator $\left[a_{j}, a_{j^{\prime}}^{\dagger}\right]=\delta_{j j^{\prime}}$ (bosons)

Hubbard model

In second quantization, Hamiltonian is written in terms of

- Creation operator a_{j}^{\dagger} : Adds a particle to j 'th well
- Annihilation operator a_{j} : Takes away a particle from j 'th well
- Commutator $\left[a_{j}, a_{j^{\prime}}^{\dagger}\right]=\delta_{j j^{\prime}}$ (bosons)
- Number operator $n_{j}=a_{j}^{\dagger} a_{j}$

Hubbard model

In second quantization, Hamiltonian is written in terms of

- Creation operator a_{j}^{\dagger} : Adds a particle to j 'th well
- Annihilation operator a_{j} : Takes away a particle from j 'th well
- Commutator $\left[a_{j}, a_{j^{\prime}}^{\dagger}\right]=\delta_{j j^{\prime}}$ (bosons)
- Number operator $n_{j}=a_{j}^{\dagger} a_{j}$
- Tunneling $a_{j}^{\dagger} a_{j^{\prime}}$

Hubbard model

In second quantization, Hamiltonian is written in terms of

- Creation operator a_{j}^{\dagger} : Adds a particle to j 'th well
- Annihilation operator a_{j} : Takes away a particle from j 'th well
- Commutator $\left[a_{j}, a_{j^{\prime}}^{\dagger}\right]=\delta_{j j^{\prime}}$ (bosons)
- Number operator $n_{j}=a_{j}^{\dagger} a_{j}$
- Tunneling $a_{j}^{\dagger} a_{j}{ }^{\prime}$

Put all this together into Hamiltonian:

$$
H-\mu N=-t \sum_{<i, j>} a_{i}^{\dagger} a_{j}+\frac{U}{2} \sum_{i} a_{i}^{\dagger} a_{i}^{\dagger} a_{i} a_{i}-\mu \sum_{i} a_{i}^{\dagger} a_{i}
$$

Mott transition

Bosonic Hubbard model has two phases:

- Superfluid: When kinetic energy dominates, J / U not small.
A BEC forms.

Mott transition

Bosonic Hubbard model has two phases:

- Superfluid: When kinetic energy dominates, J / U not small.
A BEC forms.
- Mott insulator: When interaction energy dominates, J / U small. $\left\langle n_{i}\right\rangle$ integer, variance $\left\langle n_{i}^{2}\right\rangle-\left\langle n_{i}\right\rangle^{2}$ small.

Mott transition

Bosonic Hubbard model has two phases:

- Superfluid: When kinetic energy dominates, J / U not small.
A BEC forms.
- Mott insulator: When interaction energy dominates, J / U small.
$\left\langle n_{i}\right\rangle$ integer, variance $\left\langle n_{i}^{2}\right\rangle-\left\langle n_{i}\right\rangle^{2}$ small.

Mott transition

- A quantum phase transition.

Mott transition

- A quantum phase transition.
- Takes place at zero temperature.

Mott transition

- A quantum phase transition.
- Takes place at zero temperature.
- Driven by quantum fluctuations, not thermal.

Mott transition

- A quantum phase transition.
- Takes place at zero temperature.
- Driven by quantum fluctuations, not thermal.
- Can be described by:
- Monte Carlo
- DMRG
- Mean-field theories
- Strong-coupling expansion
- some more
- Mostly heavy numerical computations.

Observing the Mott transition

Key observation: BEC is coherent - will give interference fringes. Mott insulator is not.
Periodic system \Rightarrow peaks at reciprocal lattice vectors!

First experiment by Greiner et al., 2001

Trapped systems

$$
\begin{array}{r}
H-\mu N=-t \sum_{<i, j>} a_{i}^{\dagger} a_{j} \\
+\frac{U}{2} \sum_{i} a_{i}^{\dagger} a_{i}^{\dagger} a_{i} a_{i}+\sum_{i}\left(\frac{1}{2} \omega^{2} r_{i}^{2}-\mu\right) a_{i}^{\dagger} a_{i}
\end{array}
$$

Superfluid and Mott insulating regions coexist

Trapped systems

$$
\begin{array}{r}
H-\mu N=-t \sum_{<i, j>} a_{i}^{\dagger} a_{j} \\
+\frac{U}{2} \sum_{i} a_{i}^{\dagger} a_{i}^{\dagger} a_{i} a_{i}+\sum_{i}\left(\frac{1}{2} \omega^{2} r_{i}^{2}-\mu\right) a_{i}^{\dagger} a_{i}
\end{array}
$$

Mott and superfluid shells in trap

Condensate density

Condensate phase

Density - condensate density - condensate phase Note that a local-density approximation applies.

Rotation in optical lattice

Can we have vortices in an optical lattice?

Rotation in optical lattice

Can we have vortices in an optical lattice?
Techniques:

- Rotate the actual lattice
- Mechanically rotating mask
- Interference pattern modulated in time
- Artificial gauge fields

What I found

Two limits:

1. Close to the Mott transition; vortex has Mott insulating atoms in the core
2. Further from the Mott transition; vortex core is smaller than the lattice spacing. Vortex sits between the lattice sites where density vanishes

Vortices with Mott cores

Condensate density

Condensate phase

Interstitial vortices

Condensate density

Condensate phase

End of lecture 3

Thank you for your attention

