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Today’s lecture

States that are not simple Bose-Einstein condensates:

Bose glass

Mott insulators
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Optical potentials

How does an atom interact with the E-field of a light wave?

An atom is neutral.
Nevertheless, an E-field induces a dipole moment.
Second-order perturbation theory:

V (r) ∝ |E (r)|2 ∝ I (r)

I is the irradiance
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Standing wave

V (r) = V0 cos~k ·~r
This is an optical lattice.
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Standing wave

Optical lattice: V (r) = V01 cos ~k1 ·~r + V02 cos ~k2 ·~r
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Optical lattices

Generally: Several laser beams create interference patterns in 1, 2,
or 3 dimensions.
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Lattice plus trap

Optical lattice: periodicity
Magnetic trap: Confinement
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Disorder

Cold atoms are clean and controllable systems.

Therefore ideal to study disorder – in a controlled way!

Disorder: Of interest in solid-state systems (impurities, lattice
defects)

Fundamental interest: Quantum mechanics + random
potential

New quantum phase: The Bose glass
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Disorder with optical potentials

Alternative 1: Laser speckle
Light diffracted through roughened glass

gives a random pattern
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Disorder with optical potentials

Alternative 2: Quasiperiodic potential

Simple 1D pattern:

V (x) = A cos k1x + B cos k2x

is periodic if k1/k2 is a rational number, k1/k2 = m/n

is quasiperiodic – never repeats – if k1/k2 is irrational.

(In practice: make sure that k1/k2 is not close to a ratio of small
integers such as 2/3 or 1/4.)
Popular choice: The golden ratio k1/k2 = (1 +

√
5)/2
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Quasiperiodic potential in 1D
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Quasiperiodic potential in 2D
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Anderson localization

A quantum particle in a random potential will not propagate:
localized.

No trapping (potential can be lower than energy of particle)
An interference effect.
Periodic potentials: Bloch waves → transport.
Non-periodic potentials: Interference effects → localization.
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Anderson’s argument

Constructive interference between a path and its reverse.

If not periodic, then no constructive interference for other paths –
only those that lead back to point of origin!
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Exponential localization

Wavefunctions decay exponentially at long distances:
Localized eigenstates.
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Observation of Anderson localization

Not in solids: Mean free path too short

Must construct artificial system in order to see A.L.

Light: 1997

BEC: 2008

Very dilute BEC: neglect interactions.

AL is a single-particle phenomenon.
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Experiment, Florence

Roati et al., Florence. Quasiperiodic potential in 1D
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Experiment, Paris

Billy et al., Paris.
Speckle potential in 1D
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Bose Glass

What about interacting Bose gases?
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Bose Glass

A quantum phase was predicted, the “Bose glass” phase.

For the experts: Gapless but not superfluid.

Loosely speaking: System is broken up into several small BEC,
whose phases are mutually random
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Bose Glass

Define the particle-particle correlation function

g(r , r ′) =

∫
dr2 · · · drNψ∗(r , r2, . . . , rN)ψ(r ′, r2, . . . , rN)

“If I know the phase at point r , how well can I predict the phase at
point r ′?”
BEC: g(r , r ′) ∼ const at large r − r ′

Bose glass: g(r , r ′) ∼ e−|r−r
′| exponential decay
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Bose glass: Density

Cetoli and Lundh, 2010
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Bose glass: Correlations

Cetoli and Lundh, 2010
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Bose glass in 2D

Cetoli and Lundh, to be published
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Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical
lattice (now a periodic one!)

Well described by a discrete lattice Hamiltonian!

Probability of tunneling between wells: J ∼ e−V
3/2
0

(where V0 is height of lattice potential)

Interaction between particles in same well: U ∼ U0V
3/2
0
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Hubbard model

In second quantization, Hamiltonian is written in terms of

Creation operator a†j : Adds a particle to j ’th well

Annihilation operator aj : Takes away a particle from j ’th well

Commutator [aj , a
†
j ′ ] = δjj ′ (bosons)

Number operator nj = a†j aj

Tunneling a†j aj ′

Put all this together into Hamiltonian:

H − µN = −t
∑
<i ,j>

a†i aj +
U

2

∑
i

a†i a
†
i aiai − µ

∑
i

a†i ai
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Mott transition

Bosonic Hubbard model has two phases:

Superfluid: When kinetic
energy dominates, J/U not
small.
A BEC forms.

Mott insulator: When
interaction energy dominates,
J/U small.
〈ni 〉 integer,
variance 〈n2

i 〉 − 〈ni 〉2 small.
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Mott transition

A quantum phase transition.

Takes place at zero temperature.

Driven by quantum fluctuations, not thermal.

Can be described by:

Monte Carlo
DMRG
Mean-field theories
Strong-coupling expansion
some more

Mostly heavy numerical computations.
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Observing the Mott transition

Key observation: BEC is coherent – will give interference fringes.
Mott insulator is not.
Periodic system ⇒ peaks at reciprocal lattice vectors!

First experiment by Greiner et al., 2001
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Trapped systems

H − µN = −t
∑
<i ,j>

a†i aj

+
U

2

∑
i

a†i a
†
i aiai +

∑
i

(
1

2
ω2r2

i − µ
)
a†i ai

Superfluid and Mott insulating regions coexist
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Mott and superfluid shells in trap

Density – condensate density – condensate phase
Note that a local-density approximation applies.
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Rotation in optical lattice

Can we have vortices in an optical lattice?

Techniques:

Rotate the actual lattice

Mechanically rotating mask
Interference pattern modulated in time

Artificial gauge fields
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What I found

Two limits:
1. Close to the Mott transition; vortex has Mott insulating atoms
in the core
2. Further from the Mott transition; vortex core is smaller than the
lattice spacing. Vortex sits between the lattice sites where density
vanishes
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Vortices with Mott cores
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Interstitial vortices
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End of lecture 3

Thank you for your attention
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