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Today's lecture

States that are not simple Bose-Einstein condensates:

@ Bose glass

@ Mott insulators

Emil Lundh Cold atoms 3: Optical lattices



Optical potentials

How does an atom interact with the E-field of a light wave?
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Optical potentials

How does an atom interact with the E-field of a light wave?
An atom is neutral.
Nevertheless, an E-field induces a dipole moment.
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Optical potentials

How does an atom interact with the E-field of a light wave?
An atom is neutral.

Nevertheless, an E-field induces a dipole moment.
Second-order perturbation theory:

V(r) o |E(r) o< I(r)

| is the irradiance
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Cold atomic gas

Emil Lundh Cold atoms 3: Optical lattices



;i -:»@mmrmm@«:

Cold atomic gas
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Optical lattice: V(r) = Vp1 cos ki F+ Voo cos ko -
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Generally: Several laser beams create interference patternsin 1, 2,

or 3 dimensions.
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Lattice plus trap

Optical lattice: periodicity
Magnetic trap: Confinement
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@ Cold atoms are clean and controllable systems.
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@ Cold atoms are clean and controllable systems.

@ Therefore ideal to study disorder — in a controlled way!
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@ Cold atoms are clean and controllable systems.
@ Therefore ideal to study disorder — in a controlled way!

e Disorder: Of interest in solid-state systems (impurities, lattice
defects)
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Cold atoms are clean and controllable systems.

Therefore ideal to study disorder — in a controlled way!

Disorder: Of interest in solid-state systems (impurities, lattice
defects)

@ Fundamental interest: Quantum mechanics + random
potential
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Cold atoms are clean and controllable systems.

Therefore ideal to study disorder — in a controlled way!

Disorder: Of interest in solid-state systems (impurities, lattice
defects)

@ Fundamental interest: Quantum mechanics + random
potential

@ New quantum phase: The Bose glass

Emil Lundh Cold atoms 3: Optical lattices



Disorder with optical potentials

Alternative 1: Laser speckle
Light diffracted through roughened glass

A\
3

gives a random pattern
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Disorder with optical potentials

Alternative 2: Quasiperiodic potential

Emil Lundh Cold atoms 3: Optical lattices



Disorder with optical potentials

Alternative 2: Quasiperiodic potential
Simple 1D pattern:

V(x) = Acos kyx + B cos kax
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Disorder with optical potentials

Alternative 2: Quasiperiodic potential
Simple 1D pattern:

V(x) = Acos kyx + B cos kax

e is periodic if ki /kp is a rational number, ki / ko = m/n
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Disorder with optical potentials

Alternative 2: Quasiperiodic potential
Simple 1D pattern:

V(x) = Acos kyx + B cos kax

e is periodic if ki /kp is a rational number, ki / ko = m/n

@ is quasiperiodic — never repeats — if ki /kp is irrational.
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Disorder with optical potentials

Alternative 2: Quasiperiodic potential
Simple 1D pattern:

V(x) = Acos kyx + B cos kax

e is periodic if ki /kp is a rational number, ki / ko = m/n
@ is quasiperiodic — never repeats — if ki /kp is irrational.

(In practice: make sure that ki /ky is not close to a ratio of small
integers such as 2/3 or 1/4.)
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Disorder with optical potentials

Alternative 2: Quasiperiodic potential
Simple 1D pattern:

V(x) = Acos kyx + B cos kax

e is periodic if ki /kp is a rational number, ki / ko = m/n
@ is quasiperiodic — never repeats — if ki /kp is irrational.

(In practice: make sure that ki /ky is not close to a ratio of small
integers such as 2/3 or 1/4.)
Popular choice: The golden ratio ki /ko = (1 ++/5)/2
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Quasiperiodic potential in 1D
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Anderson localization

A quantum particle in a random potential will not propagate:
localized.
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Anderson localization

A quantum particle in a random potential will not propagate:
localized.

No trapping (potential can be lower than energy of particle)
An interference effect.
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Anderson localization

A quantum particle in a random potential will not propagate:
localized.

No trapping (potential can be lower than energy of particle)
An interference effect.
Periodic potentials: Bloch waves — transport.
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Anderson localization

A quantum particle in a random potential will not propagate:
localized.

No trapping (potential can be lower than energy of particle)
An interference effect.

Periodic potentials: Bloch waves — transport.

Non-periodic potentials: Interference effects — localization.
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Anderson’s argument

".-----"'

e

Constructive interference between a path and its reverse.
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Anderson’s argument

".-----"'

e

Constructive interference between a path and its reverse.
If not periodic, then no constructive interference for other paths —
only those that lead back to point of origin!
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Exponential localization

100

Atomic density (atoms pm=1)

Wavefunctions decay exponentially at long distances:
Localized eigenstates.
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Observation of Anderson localization

Not in solids: Mean free path too short

Must construct artificial system in order to see A.L.
Light: 1997

BEC: 2008

Very dilute BEC: neglect interactions.

AL is a single-particle phenomenon.
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Experiment, Florence

'

time
Roati et al., Florence. Quasiperiodic potential in 1D
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Experiment, Paris

Billy et al., Paris.
Speckle potential in 1D
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Bose Glass

What about interacting Bose gases?
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Bose Glass
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Bose Glass

@ A quantum phase was predicted, the “Bose glass” phase.
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Bose Glass

@ A quantum phase was predicted, the “Bose glass” phase.

@ For the experts: Gapless but not superfluid.
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Bose Glass

@ A quantum phase was predicted, the “Bose glass” phase.
@ For the experts: Gapless but not superfluid.

@ Loosely speaking: System is broken up into several small BEC,
whose phases are mutually random
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Bose Glass

Define the particle-particle correlation function

g(r,r') = /dr2 coedrn(rray )y )
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Bose Glass

Define the particle-particle correlation function

g(r,r') = /dr2 coedrn(rray )y )

“If | know the phase at point r, how well can | predict the phase at
point r'?”
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Bose Glass

Define the particle-particle correlation function

g(r,r') = /dr2 coedrn(rray )y )

“If | know the phase at point r, how well can | predict the phase at
point r'?”

BEC: g(r,r") ~ const at large r — r/

Bose glass: g(r,r') ~ e~ I"=""l exponential decay
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Bose glass: Density
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Cetoli and Lundh, 2010
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Bose glass: Correlations
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Bose glass in 2D
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Cetoli and Lundh, to be published
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Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical
lattice (now a periodic one!)
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Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical
lattice (now a periodic one!)
Well described by a discrete lattice Hamiltonian!
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Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical
lattice (now a periodic one!)

Well described by a discrete lattice Hamiltonian!

Probability of tunneling between wells: J ~ e_‘/03/2

(where Vj is height of lattice potential)
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Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical
lattice (now a periodic one!)

Well described by a discrete lattice Hamiltonian!

Probability of tunneling between wells: J ~ e_‘/03/2
(where Vj is height of lattice potential)

Interaction between particles in same well: U ~ Uy V03/2
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Hubbard model

Consider a gas of bosonic atoms trapped in the wells of an optical
lattice (now a periodic one!)

Well described by a discrete lattice Hamiltonian!

Probability of tunneling between wells: J ~ e_‘/03/2
(where Vj is height of lattice potential)

Interaction between particles in same well: U ~ Uy V03/2
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Hubbard model

In second quantization, Hamiltonian is written in terms of
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Hubbard model

In second quantization, Hamiltonian is written in terms of

@ Creation operator a;[: Adds a particle to j'th well
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Hubbard model

In second quantization, Hamiltonian is written in terms of
@ Creation operator aJT: Adds a particle to j'th well

@ Annihilation operator a;: Takes away a particle from j'th well
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Hubbard model

In second quantization, Hamiltonian is written in terms of
@ Creation operator aJT: Adds a particle to j'th well
@ Annihilation operator a;: Takes away a particle from j'th well

e Commutator [aj, a},] = djj (bosons)
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Hubbard model

In second quantization, Hamiltonian is written in terms of
@ Creation operator aJT: Adds a particle to j'th well
@ Annihilation operator a;: Takes away a particle from j'th well
e Commutator [aj, a},] = djj (bosons)

= ala:
® Number operator n; = a; a;
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Hubbard model

In second quantization, Hamiltonian is written in terms of
@ Creation operator aJT: Adds a particle to j'th well
@ Annihilation operator a;: Takes away a particle from j'th well
e Commutator [aj, a},] = djj (bosons)

= ala:
® Number operator n; = a; a;

; T
@ Tunneling a;aj
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Hubbard model

In second quantization, Hamiltonian is written in terms of
@ Creation operator aJT: Adds a particle to j'th well

@ Annihilation operator a;: Takes away a particle from j'th well

T =
o Commutator [a;,a;] = d; (bosons)
@ Number operator n; = aJTaj

; T
@ Tunneling a;aj

Put all this together into Hamiltonian:

H—u :—tZaaj—F Zaaa,a, ,uZa:fa,-
i

<ij>
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Mott transition

Bosonic Hubbard model has two phases:

@ Superfluid: When kinetic
energy dominates, J/U not

small.
A BEC forms.

Emil Lundh Cold atoms 3: Optical lattices



Mott transition

Bosonic Hubbard model has two phases:

@ Superfluid: When kinetic
energy dominates, J/U not
small.

A BEC forms.

@ Mott insulator: When
interaction energy dominates,
J/U small.

(n;) integer,

variance (n?) — (n;)? small.
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Mott transition

Bosonic Hubbard model has two phases:

@ Superfluid: When kinetic
energy dominates, J/U not
small.

A BEC forms.

@ Mott insulator: When
interaction energy dominates,
J/U small.

(n;) integer,

variance (n?) — (n;)? small.
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Mott transition

@ A quantum phase transition.
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Mott transition

@ A quantum phase transition.

@ Takes place at zero temperature.
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Mott transition

@ A quantum phase transition.
@ Takes place at zero temperature.

@ Driven by quantum fluctuations, not thermal.
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Mott transition

A quantum phase transition.
Takes place at zero temperature.

Driven by quantum fluctuations, not thermal.

Can be described by:

Monte Carlo

DMRG

Mean-field theories
Strong-coupling expansion
some more

Mostly heavy numerical computations.
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Observing the Mott transition

Key observation: BEC is coherent — will give interference fringes.
Mott insulator is not.
Periodic system = peaks at reciprocal lattice vectors!

| | [ |

First experiment by Greiner et al., 2001
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Trapped systems

H—uN=—t Z aj-raj
<ij>

U 1
+§ Z alTa,Ta,-a,- + Z (2w2r,-2 — u) a}La,-
1 1

Superfluid and Mott insulating regions coexist
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Trapped systems
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Mott and superfluid shells in trap

Total and condensate density Condensate density Condensate phase

1.5

40 20 0 20 40
%

Density — condensate density — condensate phase
Note that a local-density approximation applies.
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Rotation in optical lattice

Can we have vortices in an optical lattice?
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Rotation in optical lattice

Can we have vortices in an optical lattice?
Techniques:
@ Rotate the actual lattice

e Mechanically rotating mask
o Interference pattern modulated in time

o Artificial gauge fields
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What | found

Two limits:

1. Close to the Mott transition; vortex has Mott insulating atoms
in the core

2. Further from the Mott transition; vortex core is smaller than the

lattice spacing. Vortex sits between the lattice sites where density
vanishes
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Vortices with Mott cores

Tatal ard condensate density Condensate density Condensate phase
1

=05

40 =20 0 20 40
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Interstitial vortices

Tatal ard condensate density Condensate density Condensate phase

0.5

40 20 0 20 40
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End of lecture 3

Thank you for your attention
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