Characteristics of Small World Networks

Petter Holme

20th April 2001

References:

[1.] D. J. Watts and S. H. Strogatz, *Collective Dynamics of 'Small-World' Networks*, Nature **393**, 440 (1998).

[2.] D. J. Watts, *Small Worlds: The Dynamics of Networks between Order and Randomness*, (Princeton University Press, Princeton, 1999), Part 1.

[3.] N. Mathias and V. Gopal, *Small Worlds: How and Why*, Phys. Rev. E 63, 21117 (2001).

[4.] M. Gitterman, Small-World Phenomena in Physics: The Ising Model, J. Phys. A 33, 8373 (2000).

CONTENTS

§	Milgram's Experiment	1
§	Graph Theory 1	2
§	Real World Graphs	4
§	Watts and Strogatz Model	5
§	Graph Theory 2	10
§	Small World Behaviour Emerging from Optimization	12
§	Ising Model on a Small World Lattice	16

MILGRAM'S EXPERIMENT

Milgram's Experiment

S. Milgram, The Small World Problem, Psycol. Today 2, 60 (1967).

Characteristic path length $L \approx 5$. ($\Rightarrow L = 6$ for the whole world.)

http://www.tp.umu.se/~kim/Network/holme1.pdf

Some Graph Theoretical Definitions

Definition 1 The connectivity of a vertex v, k_v , is the number of attached edges.

Definition 2 Let d(i, j) be the length of the shortest path between the vertices i and j, then the characteristic path length, L, is d(i, j) averaged over all $\binom{n}{2}$ pairs of vertices.

Definition 3 The diameter of the graph is $D = \max_{(i,j)} d(i,j)$.

(Obviously some confusion here.)

Definition 4 The neighborhood of a vertex v, $\Gamma_v = \{i : d(i, v) = 1\}$ (so $v \notin \Gamma_v$).

Definition 5 The local cluster coefficient, C_v , is:

$$C_v = |E(\Gamma_v)| / \left(\begin{array}{c} k_v \\ 2 \end{array}\right)$$

where $|E(\cdot)|$ gives a subgraph's total number of edges.

Definition 6 The cluster coefficient, C, is C_v averaged over all vertices.

http://www.tp.umu.se/~kim/Network/holme1.pdf

(continued)

Neighborhood of v with $k_v = 6$ and $|E(\Gamma_v)| = 4$, giving $C_v = 4/15$.

Real World Graphs

The Kevin Bacon Graph (KBG). Vertices are actors in IMDb (http://www.imdb.com), an edge between v and v' means that both v and v' has acted in a specific movie.

The Western States Power Grid (WSPG).

Edges are high-voltage power lines west of the Rocky Mountains. Vertices are transformers, generators, substations etc.

The C. Elegans Graph (CEG) The neural network of the worm *Caenorhabditis Elegans*, with nerves as edges and synapses as vertices.

	KBG	WSPG	\mathbf{CEG}
n	225,226	4,941	282
k	61	2.67	14
L	3.65	18.7	2.65
C	0.79 ± 0.02	0.08	0.28

Furthermore, as Beom Jun showed last week, the large k-tail of the connectivity distribution shows algebraic scaling.

1-lattice with k = 2 being rewired.

- Start with a 1-lattice with k-edges per vertex.
- Iterate the following for the nk/2 edges:
 - 1. Detach the v'-end of the edge from v to v' with probability p.
 - 2. Rewire to any other vertex v'' that is not already directly connected to v with equal probability.

If $n \gg k \gg \ln n \gg 1$ then:

- $L \sim n/2k$ and $C \sim 3/4$ for $p \approx 0$.
- $L \sim \ln n / \ln k$ and $C \sim k / n$ for $p \approx 1$.
- $L \sim \ln n / \ln k$ and $C \sim 3/4$ for 0.001 .

The last point shows the *small world property* logarithmic L(n) and high clustering.

cuts and contractions.

Mechanisms for Small World Formation Definition 8 An edge (i, j) with R(i, j) > 2is called a shortcut. If R(i, j) = 2, (i, j) is a member of a triad

The mechanisms for small world formation (in *member of a triad*. the generation algorithm) is the adding of *short*-

A model independent parameter:

Definition 7 The range of an edge R(i, j) is the length of the shortest path between i and j in the absence of that edge.

Definition 9 Given a graph of M = kn/2edges, the fraction of those edges that are shortcuts is denoted by ϕ .

Rewiring with the constraint that ϕ is fixed defines ϕ -graphs.

Conjecture 1 ϕ -graphs with constant $\phi = \phi_0 > 0$, $n > 2/k\phi_0$ and $n \gg k \gg 1$ will have logarithmic length scaling.

Graph Theory 2

Slightly more general than the shortcuts:

Definition 10 If two vertices u and w are both elements of the same neighborhood $\Gamma(v)$, and the shortest path length not involving edges adjacent with v is denoted $d_v(u, w) > 2$, then v is said to contract u and w, and the pair (u, w) is said to be a contraction.

Definition 11 ψ is the fraction of all pairs of vertices that are not connected and have one and only one common neighbor.

 ψ is for contractions what ϕ is for shortcuts.

There is no known way of constructing ψ -graphs. A contractor v, in a situation without shortcuts.

Small World Behaviour Emerging from Optimization

Small World Behavior Emerging from Optimization

N. Mathias and V. Gopal, *Small Worlds: How and Why?*, Phys. Rev. E **63**, 21117 (2001).

If we introduce a cost function $E = \lambda L + (1 - \lambda) W$ with

$$W = \sum_{(i,j)} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

does low energy states correspond to small world networks? For what values of λ does this happen?

- L drops for $\lambda \approx 10^{-2}$.
- C remains \sim constant for all λ .
- Hubs appear and merge as λ grows.

(a) $\lambda = 0$. (b) $\lambda = 5 \times 10^{-4}$. (c) $\lambda = 5 \times 10^{-3}$. (d) $\lambda = 0.0125$. (e) $\lambda = 0.025$. (f) $\lambda = 0.05$. (g) $\lambda = 0.125$. (h) $\lambda = 0.25$. (i) $\lambda = 0.5$. (j) $\lambda = 0.75$. (k) $\lambda = 1$.

Ising Model on a 1D lattice with random long-range bonds

M. Gitterman, Small-World Phenomena in Physics: The Ising Model, J. Phys. A 33, 8373.

Considers a 1-lattice with k = 2 (a one-dimensional cubic lattice with PBC), with additional long-range edges added with probability p.

For p = 0 this model have C = 0, for any $p \ C < C_{\text{random}}$ (my guess), so this model might have logarithmic length scaling but *not* high clustering. (And is thus not a small world graph.)

Through transfer matrix calculations the following is found:

- With $p \in \mathcal{O}(1/n)$ long range edges the system have a finite T transition.
- If the long range edges represents annealed disorder, a finite T phase transition occurs if $p < p_{\min} < 1$.
- If the long range edges represents quenched disorder, a finite T phase transition occurs if $p < p_{\min} \approx 1$.