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We investigate the oscillatory dynamics of an epidemiological model of SIRS(susceptible-infective-
recovered-susceptible) type on small-world networks. A delay differential equation for the infected
population is derived to show that three characteristic patterns, stationarity, oscillation, and syn-
chronized extermination exist, depending on the competition between the disease’s life cycle and
the time for it to sweep the world. Numerical calculations support this prediction and suggest that
the synchronization parameter proposed by Kuramoto can be a good measure of patterns.
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I. INTRODUCTION

Since the network became a main interest in statistical
physics, the dynamics of interacting elements forming a
network structure has been a hot issue [1–4]. The in-
teracting element can be a nonlinear oscillator [5–7], an
excitable neuron [8–11], a biological species [12, 13], a
sand pile [14–16], an epidemic disease [17–23], or even a
game participant [24–26]. These approaches help one to
analyze various aspects of this world, including biology,
sociology, politics, and economy, as well as the physics
itself [27–31].

We are interested in the small-world nature of an epi-
demiological model because it is widely applicable due
to its simplicity. The first work of epidemiology on the
small-world network [17] traced the dynamic evolution
by changing the rewiring parameter p and attributed the
birth of oscillation to the breakdown of large clusters. In
other words, the main interest was how to transit from
a fixed point with fluctuations to a self-sustained oscil-
lation. The most interesting remark is that the disease
again exterminates at very high p because it can find
no more susceptible nodes. Later varying the contagion
probability q was observed to lead to three characteristic
patterns: spontaneous extermination at low q, oscillatory
synchronization at moderate q, and synchronized exter-
mination at high q. Introducing the effect of prevention,
we could reach a seemingly counter-intuitive result that
prevention helps the disease survive against synchronized
extermination. From these observations, we suggested
that these patterns were determined by competition be-

∗E-mail: garuda@skku.edu

tween the typical life cycle of the disease and the time
taken by it to go around the world [22]. This proposi-
tion is consistent with the remark by Gade and Sinha
[21] that the time scales are quite important. Roxin et
al. [9] in this spirit even though they treated a neuron
system.

In this brief paper, we look closer into this mechanism
by changing the life cycle time of the disease and fixing
other parameters. We exclude the case of a very low
infection rate, resulting in spontaneous extermination,
in this setup. Several consequences of the epidemiolog-
ical model of concern will be presented in Section II to
explain how the oscillation is developed or suppressed.
After checking the numerical results in Section IV, we
add some concluding remarks in the last section.

II. ANALYSIS

Let us consider the SIRS formalism, where the symbol
S indicates a susceptible state to the disease, I an in-
fected state, and R a recovered state, with N = S+I+R
conserved. Starting with the S state, a node passes to
the I state by infection, where it remains for a certain
infection period τI and then to a recovery period τR be-
fore returning to the S state. The infection occurs on a
small-world network with the rewiring probability p and
the number of links per node k with the probability of
P (S → I) = 1− (1− q)ki where q ∈ [0, 1] is the infection
probability and ki is the number of infected neighbors.
Only the nodes in the I state can infect others while
those in the R state can not. The R state actually plays
the role of a barrier against the disease because it is not
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infected, either.
Before analyzing the synchronized behaviors, it is

worth pointing out that oscillation is hardly possible in a
regular lattice structure. The crucial reason is related to
the nature of a homogeneous regular lattice in that, given
a radius r, one can discriminate the interior from the ex-
terior by drawing a well-defined boundary. Considering
a disease with sufficiently high q, a closed boundary line
can be drawn between the infected and the susceptible
areas; thus, any infected node emits this line, propagat-
ing outward in every direction. The assumption of the
SIRS model prevents a boundary from back-propagating,
or penetrating another boundary line. On a finite regular
lattice, henceforth, the boundary stops its propagation
either at the end of the lattice or by collision with an-
other boundary (especially under the periodic boundary
condition) (Fig. 1 (a)). That the disease ceases to prop-
agate implies that the disease cannot infect any more
nodes and should die out. Even though the stochastic
nature allows a nonzero probability to break the bound-
ary line, especially in low q, this is negligible in a low
dimension and low q leads to the spontaneous extermi-
nation in most cases.

In order to avoid this triviality, we need to introduce
an irregularity, destroying the boundary line between the
interior and the exterior (Fig. 1 (b)). Then, the disease
can return back to the susceptible regions by using the
time gaps. Later, we will consider transition functions
periodic in time, but they are simply impossible in a
purely regular structure. One of such synchronizable dis-
ordered examples is the small-world network [17] to be
considered here, and the scale-free network structure is
also reported to exhibit synchronized oscillations [23].

Returning to the SIRS model, we note that once a
node is infected, its evolution is completely deterministic
until it returns to the S state. Therefore, throughout this
paper, we set τI = τR = τ and enjoy the equality without
losing overall qualitative features:

σI(t) = σR(t + τ), (1)

where σZ(t) is the portion of the state Z ∈ {S, I,R} at
time t. It is also evident that the following identity holds
by definition:

σS(t) + σI(t) + σR(t) = 1. (2)

Let us write down the identities to describe the evolution
of the population:

σ̇S(t) = WR→S(t)−WS→I(t),
σ̇I(t) = WS→I(t)−WI→R(t), (3)
σ̇R(t) = WI→R(t)−WR→S(t),

where WX→Y indicates the transition rate from X to
Y . The transition from S to I is probabilistic and de-
pends on the network topology, which makes it difficult
to include this step. Suppose the disease appears at time
t = 0. If the recovered nodes after infection are protected
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Fig. 1. Sample pictures of (a) a regular lattice and (b) a
disordered lattice with N = 200, k = 2, q = 0.3, and a pe-
riodic boundary conditions in common. The horizontal posi-
tion represents the index of each node, where the black color
means the infected, the gray the recovered, and the white
the susceptible, and the time flows in the upward direction.
In (a), the infection begins at the leftmost point and then
spreads in both directions (A and B), but the pulses collide
at the point C, followed by extermination. In (b), the dis-
ordered lattice has three shortcuts from the middle part to
the leftmost point. These make the arrival times dispersed.
(A,B,C), (D,E,F), or (G,H,I) are directly linked together by
these shortcuts, breaking the isotropy to allow the infection
to occur successively.

from further infection, this step can be quantified deter-
ministically by σS(t) = σR(t− τ). Since the protection,
in reality, is far from perfect, however, the only guaran-
teed fact is that σS(t) ≤ σR(t − τ), in general. Numer-
ical calculations generating large amplitude oscillations
indicate that the ratio between their peak heights settles
down around a certain value in the long run and becomes
so predictable that we may expect the infection process
to repeat itself in every circulation. This limiting value
depends on p with a positive correlation, by which the
system undergoes a phenomenon similar to the super-
critical Hopf bifurcation (Fig. 2). We assume that the
dynamics settles down to a repetitive pattern described
by a functional form WS→I(t) = f(t) ≥ 0. The life cycle
of the disease teaches us to rewrite Eq. (3) as

σ̇S(t) = f(t− 2τ)− f(t),
σ̇I(t) = f(t)− f(t− τ), (4)
σ̇R(t) = f(t− τ)− f(t− 2τ).

Newman et al. [32] solved the spread of a disease from
a single source on a small-world network by using the
mean-field approximation under the continuum limit:

σI,mf =
1
2

[
1 + s tanh

(
2ks

ξ
r − tanh−1 1

s

)]
(5)

where s =
√

1 + 2(Nkp)−1, ξ = (kp)−1, and r is the path
length from a randomly chosen point. The numerical
estimate does not exactly coincide with this mean-field
solution because the region of regular oscillations, which
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Fig. 2. Periodic trajectories at (a) p = 0.1, (b) p = 0.2, and (c) p = 0.5 with N = 103, k = 3, and τ = 7 in common. Only
512 points are plotted after the transients are removed, and these points are confined on the plane given by Eq. (2). (d) The
collapse into σS = 1 can happen spontaneously or synchronously by chance. The plots from (a) to (c) are found over several
realizations.
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Fig. 3. Limiting proportion c of the infected population as
a function of q when τ = 1, N = 103, and k = 3. (a), (b), and
(c) are sample figures describing the evolution of nodes, with
the time flowing in the right direction. (a) shows the simple
spontaneous extermination. In the succession of spontaneous
exterminations, (b), the value of c varies with the randomness
parameter p while one can see the well-developed patterns
almost independently of p in (c). The line indicates c = 1/3.

Kuperman and Abramson [17] reported as p ∈ [0.2, 0.5),
is somewhat away from the low shortcut density limit,
ξ ¿ 1, required by the mean-field approximation. In
addition, the space is not free in that the disease may

often face R barriers. Nevertheless, Eq. (5) captures the
main qualitative shape (cf. Fig. 4), and the base function
of f(t) can be described by its derivative in the nearly-
free circumstances that the disease can easily find the
susceptible,

f0(t) =
ks2

ξq
sech2

(
2ks

ξq
t− tanh−1 1

s

)
,

where r is replaced by t/q. At this stage, it is sufficient
to focus only on its essential feature by regarding the
dynamics as an effectively uniform infection, where the
time taken for the disease to spread over the whole world
is set to be Ts. Then, we classify three different cases
from a simple comparison between time scales.

The first case is what we have called synchronized ex-
termination when Ts < τ . σI reaches one at t = Ts, de-
creases from t = τ , and finally exterminates at t = τ+Ts.
The S states reappear at t = 2τ > τ + Ts when no dis-
ease exists. If the network topology taken into account,
σI is not necessarily zero at t = 2τ , but the point is that
S and I do not meet each other at all.

The second case is given by τ < Ts < 2τ . σI reaches
almost τ/Ts at the first peak, and the S nodes reappear
before all I’s die out, whereby a self-sustained oscillation
begins to be possible. Since it may take some time to find
susceptible nodes, the period T can be a little larger than
2τ , but not larger than 3τ . Eq. (4) says that the Fourier



Oscillatory Behaviors of an Epidemiological Model· · · – Seung Ki Baek -323-

(a)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

de
ns

ity

time

S
I

R
(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

de
ns

ity

time

S
I

R

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

de
ns

ity

time

S
I

R
(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

de
ns

ity

time

S
I

R

Fig. 4. Varying τ with N = 103, k = 3, p = 0.5, and q = 0.3. (a) Synchronized extermination due to the fact that the
disease has too slow a life cycle (τ = 8) compared with the sweeping time Ts. The peak almost booms up to one, but it fails to
enter the oscillation. (b) The life cycle is set to be slightly faster (τ = 7). The disease barely avoids extermination during the
interval t ∈ [15, 22] and starts to oscillate in a persistent way. (c) τ = 4. As the whole life cycle becomes comparable with the
sweeping time, the oscillatory motion is more suppressed than before. (d) With τ = 2, the motion is just stationary with noisy
fluctuations.

components are related by

f̃(ω) =
1

1− e−iωτ
˜̇σI(ω);

therefore, f(t) is of period T , i.e.,

f(t) =
∑

n

f0(t− nT )

in this case. Such periodicity directly indicates that
∫ t+T

t

{f(t′)− f(t′ − τ)}dt′

=
∫ t+T

t

σ̇I(t′)dt′ = σI(t + T )− σI(t) = 0

for any given t and τ . Additionally, as τ decreases, the
peak height also decreases as one can check in the mean-
field approximation that max{tanh(t) − tanh(t − τ)} =
2 tanh(τ/2) → 0 with τ → 0.

Lastly, the remaining case is Ts > 2τ . Low τ affects
the oscillation in two ways: Firstly, even before the in-
fected population decreases, the recovery period ends,
and new susceptible nodes are supplied. In other words,

the generations are overlapped, and some transition is
expected. In addition, an infected node has little time to
infect others. This second effect can be compensated for
by increasing q and we see a high frequency oscillation,
which indicates generation overlapping (Fig. 3(c)). Un-
less q is increased, the dynamics is described by a succes-
sion of spontaneous exterminations (Fig. 3(b)). Without
a sufficient small-world effect, the disease cannot have
enough descendants and just decays out (Fig. 3(a)). De-
noting the limiting number of the infected population as
c, it depends on p in phase (b) and has an upper limit
of about 1/3. We can say that the average probability
of infection, pavg, is an increasing function of q. In the
stationary state, σR is equal to σI = c from Eq. (1),
and σS = 1− 2c. From the small-world property, almost
every susceptible node is expected to have at least one in-
fected neighbor and can be infected with a probability of
around pavg. After τ = 1, these new infected nodes will
maintain the value of c. In short, the following relation
is established:

pavg(1− 2c) = c,

c =
pavg

2pavg + 1
≤ 1

3
.
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Fig. 5. (a) Synchronization parameter γ as a function
of τ , averaged over 500 time steps at k = 3, p = 0.5, and
q = 0.3. When oscillations develop, γ shows significant in-
creases (τ = 4 in both cases). γ is identically zero at high τ
values due to extermination (τ = 8 with N = 103 and τ = 9
with N = 104). (b) Relationships between Ts and the tran-
sition points. The horizontal axis means Ts, and the vertical
positions represent the values of τ where the synchronized
exterminations occur (+) and where the synchronized oscil-
lations are established (×). Here, Ts is regarded as the time
taken for over 90 % of the whole population to have ever been
infected, and the critical value of γ to detect the synchronized
oscillations is set to be 0.1. The transition points to the syn-
chronized extermination are identified with τ ’s where where
nonzero γ first appears from 30 realizations, as τ decreases
from above. p and q vary within [0.3, 1.0] and [0.1, 0.5], re-
spectively.

where the equality holds when pavg = 1. We carry
out a sort of mean-field calculation in analogy with the
chemical reactions in Appendix as a qualitative exam-
ple, though it does not exactly coincide with the above
results.

III. NUMERICAL RESULTS

Some numerical results are depicted in Fig. 4 for
N = 103, k = 3, p = 0.5, and q = 0.3 in common.
Fig. 4(a) corresponds to the first case of Ts < τ , classi-
fied above as synchronized extermination. The infected

population reaches nearly 100 % at the first peak, show-
ing an extreme synchronization, but the circulation is
maintained only one time. Note that this direct simu-
lation shows Ts ' 8. A little smaller τ enables large
amplitude oscillations to occur repeatedly (Fig. 4(b)),
as many authors have already reported. The oscillation
does not retain its shape in much smaller τ (Fig. 4(c))
and transits gradually to a noisy fluctuation in the end
(Fig. 4(d)). Our analysis in the previous section suggests
that the oscillation cannot be sustained in the mean-field
limit where every node interacts with the others with dif-
ferent states on average and that the situation actually
could correspond to the generation overlapping.

To quantify the characteristic behaviors, we check the
transition of the synchronization parameter [33]

γ =
∣∣∣∣
1
N

ΣN
j=1e

iφj(t)

∣∣∣∣ ,

where φj is the phase of the disease’s life cycle at the node
j. The S state corresponds to φj = 0 and is excluded
from the summation [17]. Fig. 5(a) shows the typical
results, and we can see three kinds of the characteris-
tic behaviors, stationarity, oscillation, and synchronized
extermination. If we regard those points with zero syn-
chronizations as signs of exceeding Ts, Ts is estimated
roughly as 8 in the case of N = 103 and as 9 in the case
of N = 104, consistent with the fact that the character-
istic path length scales as O(log N) [34].

Synchronized oscillations are expected to exist in
Ts/2 < τ < Ts, according to the previous section. Al-
though the probabilistic nature makes it difficult to ana-
lyze, this relation seems to hold over a variety of param-
eter sets (Fig. 5(b)).

The least-squares fitting shows that the proportionali-
ties of critical τ with respect to Ts are given by 0.38 and
0.95, which are not very far from the predicted values
1/2 and 1, even though the estimate can be affected by
the criteria we take to determine the transition points
and Ts.

IV. CONCLUSION

We examined the oscillation of the SIRS model on a
small-world network from the viewpoint of the competi-
tion between two time scales: the life cycle of the disease
and the sweeping time. Some sketches of the mathe-
matical treatment of this system were given in terms of
the delay differential equation, by which we could ob-
serve three characteristic patterns, stationarity, oscilla-
tion, and synchronized extermination, once the disease
had enough ability of infection.

The SIRS formalism requires only synchronizable el-
ements having some inactive period after infection;
thereby, we can say that it is quite a general model.
Similar patterns appear in many fields, including ecol-
ogy and economics, and understanding this dynamic is
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an important task. The solution space is searched, not
exhaustively here but only roughly, to provide an intu-
itive understanding, and more rigorous work remains to
be done.

APPENDIX

When the states are desynchronized, we may assume
that this randomly mixed up situation can be approxi-
mated by a sort of the chemical-reaction type interaction
S + I −→ I + I. The transition function is given by

f(t) ∝ NqσS(t)σI(t),

where the proportionality coefficient is related to the re-
action frequency within a given time unit, and we nor-
malize it to unity in accordance with the discrete version.
Eq. (4) becomes

σ̇I(t) ' Nq{σS(t)σI(t)− σS(t− τ)σI(t− τ)}
= Nq[{1− σI(t)− σI(t− τ)}σI(t) (A.1)
−{1− σI(t− τ)− σI(t− 2τ)}σI(t− τ)].

It is easy to see that Eq. (A.1) has a stationary solution.
We approximate Eq. (A.1) by a set of ordinary differen-
tial equations:

ẋ = Nq[(1− x− y)x− (1− y − z)y],
ẏ = τ−1(x− y), (A.2)
ż = τ−1(y − z).

x(t) represents the variable σI(t) of our main concern,
and y(t) is introduced to trace x(t) with a characteristic
time scale τ mimicking x(t−τ) as z(t) does y(t−τ). The
fixed point is (x, y, z) = (c, c, c) for a certain constant
c ∈ (0, 1

2 ] where the upper limit is required by Eq. (2).
The eigenvalues are found by solving the following

characteristic polynomial equation:(
1− 3c− λ

Nq

)
(τ−1 + λ)2

+(2c− 1)τ−1(τ−1 + λ) + cτ−2 = 0.

One can readily solve this equation for λ to find the
stability criterion of the fixed point. The set of equa-
tions approaches the original delay differential equation
if the dimensionality increases by introducing more vari-
ables ẏα = mτ−1(yα−1 − yα), α = 1, · · · , 2m with
y0 = x. In the limit m → ∞, these equations, as
a whole, correspond to a partial differential equation
(∂y/∂α) + τ(∂y/∂t) = 0, which admits a propagating
solution of the form g(t/τ − α). The equation of x then
also changes into

ẋ = Nq[(1− x− ym)x− (1− ym − y2m)ym],

and the characteristic equation is obtained as(
1− 3c− λ

Nq

)
(mτ−1 + λ)2m + (2c− 1)(mτ−1)m

×(mτ−1 + λ)m + c(mτ−1)2m = 0.

As m →∞, we get a transcendental equation

(2c− 1)e−λτ + ce−2λτ =
λ

Nq
+ 3c− 1.

In the limit of infinite N , the first term on the right-hand
side(RHS) vanishes, and we get

(2c− 1)e−λτ + ce−2λτ = 3c− 1. (A.3)

Let λ be a general complex number a+bi, where a and
b are both real. Then, Eq. (A.3) yields a set of equations,

(2c− 1)e−aτ cos bτ + ce−2aτ cos 2bτ = 3c− 1, (A.4)

and

(2c− 1)e−aτ sin bτ + ce−2aτ sin 2bτ = 0, (A.5)

where the first equation is for the real part, and the sec-
ond one for the imaginary part. Eq. (A.5) gives us two
choices: sin bτ = 0 or not. If we consider the nonzero
case first, Eq. (A.5) reduces to

e−aτ cos bτ =
1
2c
− 1.

Substituting this in Eq. (A.4), we obtain

cos2 bτ =
(1− 2c)2

−12c2 + 4c
. (A.6)

A square of cosine should lie in [0, 1], but the RHS of
Eq. (A.6) cannot satisfy this requirement unless c = 1/4.
Since then cos2 bτ = 1, it contradicts the assumption
that sin bτ 6= 0. On the other hand, if sin bτ = 0, which
is equivalent to cos bτ = ±1, Eq. (A.4) yields

a = −1
τ

log
∣∣∣∣
1
c
− 3

∣∣∣∣ . (A.7)

Therefore, a positive a can be found for 1
4 < c < 1

2 .
We did not determine the value of c yet. The answer

comes from the balance between the input and the out-
put. In the stationary state, the age structure of the
infected population is supposed to be uniform, and the
portion to enter the R state is roughly 1/τ . Henceforth,

1
τ

c = Nq(1− 2c)c,

c =
1
2

(
1− 1

Nτq

)
.

As N → ∞, c approaches 1/2. This is natural because
any susceptible node will be soon infected through the
mean-field-like reaction. From the above calculation, we
know that c = 1/2 does not give an eigenvalue with a
positive real part. The value, however, is not the same
as the actual simulation result.
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