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A Noise-Filtering Scheme for a Chaotic Signal
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We present a noise-filtering scheme which works on a chaotic signal containing a certain level of
noise. Our method exploits the simplicity of Rosa’s filtering scheme, as well as the high applicability
of the maximum likelihood method. We tested our scheme on signals from various dynamical
systems and found that the noise amplitudes could be reduced up to a few percent. In the study,
we are learned that our scheme could also be used for inferring the underlying dynamics of a received
chaotic signal when no a-priori knowledge of the dynamics was given.
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I. INTRODUCTION

How to filter noise from a signal has been of great im-
portance in communication and experimental research.
As the broad-band spectrum of signals from nonlin-
ear chaotic systems usually makes traditional linear fil-
ters unfeasible, many researchers have studied noise re-
duction methods applicable to nonlinear systems. Af-
ter Kostelich and Yorke published a classical work us-
ing determinism [1, 2], Hammel, as well as Farmer
and Sidorowich, proposed an alternative approach based
on shadowing [3, 4] (also see Ref. 5 for comparison),
Schreiber and Kostelich investigated a simple and com-
mon method [6,7], and Davies developed the framework
of Bayesian Theory [8]. Recently, Bröcker and Parlitz
considered a refinement of the gradient descent method
[9]. Most of these methods approach noise reduction by
formulating minimization problems.

In the viewpoint of information theory [10, 11], a
chaotic system is interpreted as an active process of its
dynamical information. As time goes, areas in state
space are repeatedly stretched and folded, and this mech-
anism causes a sensitive dependence on the initial condi-
tions. In this view, we have measuring tools with finitely
limited resolution. The stretching process reveals more
precisely the initial state that could not be identified
with the tools available at that time. If only a stretching
process exists, the occupied area in state space, i.e., the
energy of the system, diverges to infinity as the preci-
sion infinitely increases, as Brillouin claimed in Ref. 11.
The folding process prevents this divergence, inevitably
removing some stored information of the past, which is
why we cannot discriminate every detail of the past only
by observing the present state. Thus, sufficient obser-
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vation should resolve where true data points lie in the
absence of noise [12]. The purpose of this article is to
present how this property is exploited in noise filtering
and how this method becomes possible in high dimen-
sional systems.

II. THEORETICAL BACKGROUND

It is widely known that there are two kinds of noise:
Measurement noise means corruption of data in the ob-
servation process without interfering with the dynamics
itself while dynamical noise denotes a perturbation of the
system coupled to dynamics and occurring at each time
step. In this paper, we treat measurement noise, which
we can pretend to be dynamical and vice versa [4]. There
exists a true orbit {Yk}Nk=1 satisfying a certain dynam-
ics Yk+1 = M(Yk) for 1 ≤ k ≤ N − 1 and we observe
only a noisy orbit {Xk}Nk=1 given by Xk = Yk + ηk for
small |ηk| < δ, where ηk and δ denotes the noise and the
noise level, respectively. We would like to obtain a less
noisy orbit {X ′k}Nk=1, and most approaches to this prob-
lem minimize a target function with constraints, such as

S =
N∑
k=1

|X ′k −Xk|2 +
N−1∑
k=1

{M(X ′k)−X ′k+1}λk, (1)

where λk is a Lagrangian multiplier [4]. Minimizing
S corresponds to maximizing the likelihood function P̄
within a time interval [t− α, t+ β]:

P̄ (Mα(Xt−α), . . . ,M−β(Xt+β))

∝
j=−β∏
j=α

exp

(
− 1

2σ2

∣∣∣∣M j(Xt−j)− Yt
dM j(Yt−j)

∣∣∣∣2
)
, (2)
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where dM is the derivative of M under the assumption
that the sequence {ηk} is independently Gaussian dis-
tributed with standard deviation σ. The probability dis-
tributions of position at different times are transported
to a particular time and distorted by a chaotic dynamics
M ; the true data point is restricted to their intersection.
Thus, the maximum of the joint probability function P̄
estimates the position of the true data point at that time.
We shall discuss how this calculation is simplified if we
consider information aspects as in the area of communi-
cation.

Studies on communication using chaos [13–15] have
been carried out for an understanding of chaos control
[16,17] and chaos synchronization [18,19]. The main is-
sues in this field are how to encode information using
a chaotic signal with dynamics already known to both
the transmitter and receiver and how to build a system
resistant to noise occurring in the communication chan-
nel, which corresponds to measurement noise. Rosa et
al. [20] illustrated a filtering method using a 2x mod 1
map. This method, called Rosa’s method, is described
as follows: One picks a point (Xt, Xt+1) and executes a
backward iteration on Xt+1, resulting in two pre-images,
X̂Left
t and X̂Right

t ; the one closest to Xt is selected as a
filtered point of time t. This filter shrinks the noise by a
factor of two (i.e. the Lyapunov exponent of the map) at
each iteration. Andreyev et al. [21] investigated informa-
tion aspects and applications of Rosa’s method. They,
however, only treated basically 1-dimensional maps be-
cause they had to do the inverse mapping directly.

III. NOISE FILTER

Following Rosa et al., we start with the case of a
2x mod 1 map as the simplest example of chaotic dy-
namics and of our scheme. If a binary representation
is employed in describing states, each iteration simply
shifts the decimal point one space to the right. Let us
assume that we introduce noise with such a level that we
can guarantee only the first effective number. If the ini-
tial state is observed to be 0.a0xx . . . and the first and the
second iterations give 0.a1xx . . . and 0.a2xx . . ., respec-
tively, noting that digits marked by x may be spurious,
we can say that the initial state is, in fact, 0.a0a1a2 · · ·,
effectively reducing the noise on the initial state.

The above example involves two conditions: the noise
level δ is known, and the dynamics is chaotic. In such
cases, we ignore the spoiled parts, and that converts an
observed point to a set of candidate points, leading to
degeneracy (e.g., all the points whose first digit is a0).
Then, we clarify what the point should be by receiving
information from other unspoiled parts of data. Roughly
speaking, proper temporal extension can compensate for
spatial ambiguity [22]. If a data point Xt is observed,
the real value Yt should lie within a finite neighborhood
I(Xt), whose size comes from the noise level δ. The

next real value Yt+1, evolving from Yt deterministically,
also belongs to I(Xt+1) while it does not hold for every
point pt ∈ I(Xt) and its successor pt+1. Noting that the
inverse mapping M−1 operates on a set of points, not on
a single point where the inverse map cannot be defined,
we find the n-th order refinement,

I(Xt)new(n) =
n⋂
i=0

M−i {I(Xt+i)} . (3)

In terms of the previous example, M−i {I(Xi)} with
t = 0 means the set of binary numbers whose i-th digit
is ai. As the n-th order refinement requires n + 1 suc-
cessive measurements, it is obvious that the diameter of
a remaining set never increases so that this algorithm is
non-divergent:

0 <
∣∣∣I(Xt)new(n)

∣∣∣ ≤ ∣∣∣I(Xt)new(n−1)

∣∣∣ . (4)

Equation (3) shares similarity with Eq. (2) of the max-
imum likelihood method, but the Gaussian assumption
turns out to be unnecessary in our scheme. Once δ is de-
fined, other details of the noise are irrelevant. It is also
worth noting that Eq. (3) formalizes the basic philoso-
phy of Rosa’s method. The difficulty in its application
is remedied by rewriting Eq. (3) as

Mn
{
I(Xt)new(n)

}
⊂

n⋂
i=0

M i {I(Xt+n−i)} . (5)

This allows one to avoid calculating an inverse map-
ping, which is hardly possible in high-dimensional sys-
tems. We deduce that if a point does not belong to
the set of the right-hand side of Eq. (5), it cannot lie
in the set of the left-hand side. Then, what has to be
done is only selecting points within I(Xt) which satisfy
the right-hand side after n times of mapping. Hence-
forth, we iterate all nearby grid points around the ob-
served data which approximate I(Xt) in a discrete man-
ner and reject false ones outside the next expected in-
tervals, I(Xt+1). We repeat the same procedure until
the number of remaining points is less than a certain
threshold, i.e.,

∣∣∣I(Xt)new(m)

∣∣∣ < Rth. Xt is then corrected

to X ′k =
〈
I(Xt)new(m)

〉
, the average of those remaining

points. The number of steps, m, required to reach this
threshold Rth, measures the performance of the noise fil-
ter, and we define this quantity as decay time. Since
each point has its m, we obtain another sequence of de-
cay times {mk}Nk=1 after refinement. A system with short
m is so sensitive that wrong guesses are easily rejected;
thus, it is easy to clean the noise. One can expect the
average decay time mavg = N−1

∑N
k=1mk to be related

to the Lyapunov exponent h, and the relationship is de-
picted in Fig. 1 for a typical initial condition in the gen-
eralized Baker’s map. This dependency, mavg ∝ h−1,
comes from Shannon-McMillan-Breiman Theorem [23]:
if M is an ergodic transformation on a probability space
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Fig. 1. The average decay time mavg is inversely propor-
tional to the Lyapunov exponent for the generalized baker’s
map.

(Z, µ) with a finite generating partition P , then for al-
most every w = (w1w2w3 . . .) ∈ Z,

− lim
n→∞

logµ (Pn(w))
n

= h(M), (6)

where Pn(w) = {y ∈ Z : y1 = w1, · · · , yn = wn}. By
choosing n ' m, we fix µ at a constant value and obtain
mavg ∝ h−1. The proportionality appears to depend on
both the system and the noise characteristics and is to be
studied more. Later in section IV. , we use this concept
of average decay time in a different context; that is, fast
decay implies a large deviation from the true dynamics.

Figure 2 demonstrates the result of this scheme for a
Lorenz system:

ẋ = σ(y − x), (7)

ẏ = rx− y − xz, (8)

ż = xy − bz, (9)

where σ = 10, r = 28 and b = 8/3. The noisy orbit
{Xk} is generated in Fig. 2(a) by introducing noise of
δ ≈ 5% of whole system size, which is enough to destroy
most important characteristics of the attractor [17]. Our
scheme corrects each point Xk into X ′k, as depicted in
Fig. 2(b), where 20 × 20 × 20 neighboring grid points
are constructed for each data point and Rth is set to be
10 throughout the calculation. We define the relative
variance as

e =
∑N
k=1(Yk −X ′k)2∑N
k=1(Yk −Xk)2

(10)

to quantify the performance of the scheme, where e < 1
means that noise is reduced (e = 0 for total noise re-
moval). This demonstration yields e ≈ 0.05, which im-
plies a high point-to-point correspondence so that fol-
lowing Ref. 4, this scheme can be categorized as detailed
noise reduction. The value of e can be controlled by

Fig. 2. (a) Lorenz attractor with 5 % noise added and
(b) refined data (100,000 iterations for each). The relative
variation becomes reduced to about 0.05.

the number of neighboring grid points and the threshold
value Rth. Similar results are obtained for the logistic
map, Rössler’s system, and the 4-dimensional model in-
troduced in Ref. 24.

The condition of chaoticity often involves directional-
ity in some maps where invariant manifolds are aligned
with specific directions. For example, we apply the above
procedure to the generalized Baker’s map (Fig. 3). In
that histogram, hollow and filled bars represent the er-
ror distributions of the original data set and the refined
one, respectively. It is evident that noise gets very close
to zero only along the unstable direction. The other di-
rection can be properly treated by a backward iteration.
We also find that this directionality highlights the exis-
tence of homoclinic tangencies, which are suggested as
a solution to the generating partition problem in nonhy-
perbolic systems [25,26].

IV. INFERRING DYNAMICS

So far, a full knowledge of dynamics has been assumed.
Although this assumption may be valid in some areas, in
general, we need to infer dynamics from given raw data.
Farmer and Sidorowich pointed out that how much noise
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Fig. 3. Directionality of noise reduction in the generalized
baker’s map. The noise remains at the same level along the
x-axis (stable direction), while it shrinks to zero, as expected,
along the y-axis (unstable direction).

one can reduce is limited by the accuracy of the approx-
imation to the true dynamics [4]. At first, we tried to
find local linear dynamics as Kostelich and Yorke did
[1], but it was not quite satisfactory because determin-
ing the size of the neighborhood was troublesome; that
is, a size that was too small often decreased the statis-
tical confidence and one that was too large could not
capture the fine structure of the attractor. Looking for
alternatives consistent with the above scheme, we noted
that the true dynamics would be the most accurate ap-
proximation among other candidate models and that our
getting closer to the true dynamics could be expressed
by a longer m on average.

Let us suppose that the parameter r in Eq. (8), repre-
senting the Rayleigh number in the convection problem
[27], is unknown. Even though we are given the same
data as Fig. 2(a), we should test many Lorenz systems
with different r values until finding r = 28. We already
know that application of the scheme yields an mk for
each data point Xk, resulting in a series of {mk}. It
is natural that the statistical properties of {mk} change
with the different r value. Figure 4 shows how the choice
of r changes the distribution of {mk}. We depicted only
two cases, r = 28 (correct) and r = 0 (wrong), though we

Fig. 4. Distribution shapes of the decay time in a Lorenz
system. On average, the decay time decreases with the devi-
ation from correct r.

Fig. 5. mavg at some r values in a Lorenz system. A peak
appears when the correct value is chosen.

observed the same tendency for intermediate values of r.
The average decay time, mavg, rises to 14.71 for r = 28
while it rises to only 5.96 for r = 0. The distribution
looks Maxwellian in the vicinity of the true dynamics,
and this Maxwellian region can be reached by process-
ing raw data. This distribution form interests us, but
the reason remains to be explained later. The values of
mavg are plotted in Fig. 5 for various parameters. It is
obvious in a Lorenz system that the correct parameter
values can be chosen from the peak. Rössler’s system
also gives the desired results, though it requires quite
many data points to find a peak.

Let us consider two extreme cases to elucidate the ba-
sic nature of the distribution. If the underlying dynamics
is so trivial (e.g., stable periodic motion) that one can
easily discover it, the future orbit is highly predictable,
and the distribution will be drawn to infinity. As a non-
chaotic system contains little information, our scheme
becomes ineffective with diverging mavg. Conversely, if
the dynamics looks totally unpredictable based on our
knowledge, the distribution will collapse to a zero point.
We again see that noise is not reduced at all because the
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accuracy of the approximation sets an upper bound of
reducing performance, as stated above.

V. CONCLUSION

In summary, we suggest a nonlinear noise filtering
scheme, which requires the two conditions of chaotic-
ity and a well-defined noise level. Topological consider-
ations and an information-theoretic approach are com-
bined in our scheme and provide a concise and easily
applied way to reduce noise. In the example of a Lorenz
model, this scheme yields a good result in which the vari-
ance from the original orbit becomes about a twentieth.
The value of relative variance, a performance measure of
the filter, can be controlled by using the parameters of
the scheme. The example also clearly demonstrates that
Rosa’s method can be extended to a high dimensional
system if properly formulated.

We introduce the concept of the decay time and pro-
pose its average mavg, an extension of the Lyapunov ex-
ponent, as a quantifier for inferring dynamics. We note
that inference is but the other side of noise reduction.
Since the quantifier is expected to be highest when the
parameter under consideration hits its true value, one
can guess the unknown value of the parameter from its
peaks. These results imply that an information theo-
retic approach can help one to get a fruitful perspective
on dynamical systems.
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