Solutions to Space Physics Exam, 2003-01-03.

1. When considering a satellite in transfer orbit it is reasonable to neglect air resitance and gravitation. From the rocket equation, with Δv antiparallel to v_{e}, we obtain

$$
\Delta v=-v_{e} \int_{0}^{t_{b}} \frac{\dot{m}}{m} d t=v_{e} \ln \left(\frac{m_{p}+m_{f}}{m_{p}}\right)
$$

where m_{f} is the mass of the required fuel. Solving for m_{f} we find

$$
m_{f}=m_{p}\left(\exp \left(\frac{\Delta v}{v_{e}}\right)-1\right)
$$

Inserting $m_{p}=500 \mathrm{~kg}, \Delta v=3000 \mathrm{~m} / \mathrm{s}$, and $v_{e}=2000 \mathrm{~m} / \mathrm{s}$ we find $m_{f}=$ $500(\exp (1.5)-1) \mathrm{kg}=1741 \mathrm{~kg}$.

Answer: The satellite must carry 1741 kg of fuel.
2. Energy transport in the Sun is described in the Lecture notes on Space Physics, section 4.2.1, page 32 .
3. The magnetic moment of an electron with velocityv and pitch angle α is $\mu=\frac{m v^{2} \sin ^{2} \alpha}{2 B}$. Since the magnetic moment and the kinetic energy are both conserved when the electron moves in a slowly varying magnetic field it follows that

$$
\sin ^{2} \alpha_{E}=\frac{B_{E}}{B_{M}}
$$

where α_{E} is the equatorial pitch angle, B_{E} is the equatorial magnetic field, and B_{M} is the magnetic field at the mirror point where $\alpha=90^{\circ}$. The latitude of the mirror point is obtained from $r\left(\lambda_{M}\right)=L R_{E} \cos ^{2} \lambda_{M}=r_{M}$, so that $\cos ^{2} \lambda_{M}=r_{M} / r_{E}$. From the given formula we obtain the ratio between the equatorial magnetic field $B_{E}=B(L=7, \lambda=0)$ and the magnetic field at the mirror point $B_{M}=B\left(L=7, \lambda_{M}\right)$ as

$$
\frac{B_{E}}{B_{M}}=\frac{\cos ^{6} \lambda_{M}}{\left(1+3 \sin ^{2} \lambda_{M}\right)^{1 / 2}}
$$

Using $\cos ^{2} \lambda+\sin ^{2} \lambda=1$ we find

$$
\sin ^{2} \alpha_{E}=\frac{\cos ^{6} \lambda_{M}}{\left(4-3 \cos ^{2} \lambda_{M}\right)^{1 / 2}}=\frac{\left(r_{M} / r_{E}\right)^{3}}{\left(4-3 r_{M} / r_{E}\right)^{1 / 2}}
$$

With $r_{M} / r_{E}=1.4 / 7=0.2$ we numerically find $\sin ^{2} \alpha_{E}=0.2^{3} / \sqrt{3.4}$ and $\alpha_{E}=3.77^{\circ}$.

Answer: The equatorial pitch angle is 3.8°.
4. The ozone layer is treated in the Lecture Notes on Space Physics, section 8.2.3, pages 81-83.
5. Notice that \mathbf{B}, \mathbf{E}, and \mathbf{U} are all perpendicular to each other. Assume that the width of the flux tube is δ_{E} in the direction of \mathbf{E} and δ_{U} in the direction of \mathbf{U}. Since there are no field-aligned electric fields the potential difference $\Delta \phi=E \delta_{E}$ will be constant along the flux tube, although \mathbf{E} and δ_{E} both depend on B. The magnetic flux $\Phi=B \delta_{U} \delta_{E}$ in the flux tube is also constant. From the problem text we have that $U=E / B$. The plasma will drift the distance δ_{U} across the flux tube in the time

$$
T=\frac{\delta_{U}}{U}=\frac{B \delta_{U}}{E}=\frac{B \delta_{U} \delta_{E}}{E \delta_{E}}=\frac{\Phi}{\Delta \phi}
$$

and since Φ and $\Delta \phi$ are constant along the flux tube, T must also be constant. Q. E. D.
6. Choose a coordinate system with $\hat{\mathbf{x}}$ pointing to the Earth, $\hat{\mathbf{y}}$ to the evening, and $\hat{\mathbf{z}}$ to the north. The main magnetic field component is then $B_{x}\left(\pm z_{l}\right)= \pm 10$ nT , positive above the neutral sheet (at $z=z_{l}$) and negative below $\left(z=-z_{l}\right)$. Here, z_{l} is a point in the tail lobe, outside the neutral sheet. Within the neutral sheet there is a small magnetic field component $B_{z}=2 \mathrm{nT}$. The tail diameter is $D=30 \mathrm{R}_{\mathrm{E}}$ and the cross-tail potential difference $V=70 \mathrm{kV}$ corresponds to an electric field $\mathbf{E}=\hat{\mathbf{y}} E_{y}=\hat{\mathbf{y}} V / D$.
a. The power dissipated per R_{E} is $P=V I$, where the current I is determined by integrating $1 \mathrm{R}_{\mathrm{E}}$ in the $\hat{\mathbf{x}}$ direction along the tail from some point x_{0} in the relevant part of the tail, and in the $\hat{\mathbf{z}}$ direction from a point $-z_{l}$ below the neutral sheet to z_{l} above as

$$
\begin{equation*}
I=\int_{x_{0}}^{x_{0}+\mathrm{R}_{\mathrm{E}}} d x \int_{-z_{l}}^{z_{l}} d z j_{y}(z) \tag{1}
\end{equation*}
$$

The reversal of the magnetic field component B_{x} is caused by the current density j_{y} in the neutral sheet. From Ampere's law (with $\partial_{t} \mathbf{E}=0$) we have

$$
\partial_{z} B_{x}=\mu_{0} j_{y}
$$

and inserting this in (1) we find

$$
I=\frac{\mathrm{R}_{\mathrm{E}}}{\mu_{0}} \int_{-z_{l}}^{z_{l}} d z \partial_{z} B_{x}=\frac{2 \mathrm{R}_{\mathrm{E}}}{\mu_{0}} B_{x}\left(z_{l}\right)
$$

and the dissipated power is

$$
P=\frac{2 \mathrm{R}_{\mathrm{E}}}{\mu_{0}} B_{x}\left(z_{l}\right) V
$$

Numerically we obtain

$$
P \approx \frac{2 \cdot 6.37 \cdot 10^{6}}{4 \pi \cdot 10^{-7}} 10 \cdot 10^{-9} \cdot 70 \cdot 10^{3} \mathrm{~W} \approx 7 \cdot 10^{9} \mathrm{~W}
$$

b. The flow velocity \mathbf{U} of the plasma is determined by

$$
\mathbf{U}=\frac{\mathbf{E} \times \mathbf{B}}{B^{2}}
$$

The inflow from the lobes is the $\hat{\mathbf{z}}$ component of \mathbf{U}, or

$$
U_{z}(z)=-E_{y} / B_{x}(z)=-\frac{V}{D B_{x}(z)}
$$

Since B_{x} has the same sign as z the flow is always towards the neutral sheet. Numerically its magnitude is

$$
U_{z} \approx \frac{70 \cdot 10^{3}}{30 \cdot 6.37 \cdot 10^{6} 10 \cdot 10^{-9}} \mathrm{~m} / \mathrm{s} \approx 36.6 \mathrm{~km} / \mathrm{s}
$$

c. The sunward flow in the neutral sheet is the $\hat{\mathbf{x}}$ component of \mathbf{U}, determined by the neutral sheet magnetic field B_{z}. We find

$$
U_{x}=\frac{E_{y}}{B_{z}}=\frac{V}{D B_{z}}
$$

and inserting the given numbers

$$
U_{x} \approx \frac{70 \cdot 10^{3}}{30 \cdot 6.37 \cdot 10^{6} 2 \cdot 10^{-9}} \mathrm{~m} / \mathrm{s} \approx 183 \mathrm{~km} / \mathrm{s}
$$

