
Lösningar till tentamen i rymdfysik, 2000–10–27

1. The motion of the rocket is described by

v̇(t) =
ṁ

m(t)
ve + g

During the time interval 0 < t < tb the rocket mass m(t) changes from ml to
mr = ml − mb, and during this time ṁ < 0. At later times, t > tb, we have
m(t) = mr and ṁ = 0. Integrating the equation of motion up to time T with
v(0) = 0 gives

v(T ) =
∫ T

0
ve

ṁ

m(t)
+ g dt

= ve

∫ tb

0
dt(ln m(t)) dt + gT = ve ln

(

mr

ml

)

+ gT

We choose the velocity positive upwards and insert the given values ve = −2000
m/s, T = 30 s, ml = 400 kg, and mb = 200 kg. Using g = −9.81 kg m/s2 and
mr = 200 kg we find

v(T ) = [−2000 ln
1

2
− 9.81 · 30] m/s = 1092 m/s

Answer: After 30 s the velocity of the rocket is 1092 m/s.

2. The Chapman layer is derived in section 8.3.2, page 84, in the lecture notes. A
qualitative description should include the importance of the balance between
the intensity of the downgoing radiation and the decreasing density of the
neutral plasma with altitude for the ionisation rate. Loss of free electrons by
recombination should also be discussed.
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3. Assuming spherical symmetry, the mass flux due to the solar wind is

φ = 4πR2nmpvSW

where R = 1AU = 1.496·1011 m, the solar wind density n = 7·106 protons/m3,
the proton mass mp = 1.67 · 10−27 kg, and the solar wind velocity is vSW =
450 km/s. The mass lost during a time t is then mSW = φt.

The power lost by electromagnetic radiation is

P = 4πR2ε

where ε = 1.39 kW/m2 is the solar constant. The energy lost during time t is
E = Pt. Using E = mc2, this corresponds to a mass loss mrad = 4πR2ε/c2 t.

The entire solar mass M� = 2 · 1030 kg has been consumed when

mSW + mrad = M� = 4πR2

(

ε

c2
+ nmpvSW

)

t

From this we find the time

t =
M�

4πR2
(

ε
c2 + nmpvSW

)

Numerically, we find that ε/c2 ≈ 1.54 · 10−14 kg m−2 s−1 is comparable to
nmpvSW ≈ 5.26 · 10−15 kg m−2 s−1. The Sun will have lost all its mass after

3.4 · 1020 s, or about 1013 years.
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4. When an electron moves in a slowly varying magnetic field, its kinetic energy
and magnetic moment are conserved. Hence, the kinetic energy will be Ek =
10 eV = 1.6 × 10−18 J also in the equatorial plane. The velocity is then

v =
√

2Ek/me, where me = 9.1 · 10−31 kg is the electron mass. Introducing
the velocity components parallel and perpendicular to the magnetic field,
v‖ = v cos α and v⊥ = v sin α, we can express the magnetic moment as

µ =
mev

2
⊥

2B
=

mev
2

2B
sin2 α = Ek

sin2 α

B

Since µ and Ek are constants, sin2 α/B must be a constant. Using that
sin2 α = 1 when B = BI we find v2

⊥ = v2 sin2 α = v2B/BI . The parallel
velocity at a point where the magnetic field is B ≤ BI may then be written

v‖ =
√

v2 − v2
⊥ =

√

v2(1 − B/BI)

In the equatorial plane where B = BE = 5 µT the parallel velocity v‖E is

v‖E =

√

2Ek

me
(1 − BE/BI)

Numerically,

v‖E =

√

2 · 1.6 · 10−18

9.1 · 10−31
(1 − 5/50) m/s = 1.78 · 106 m/s

Answer: At the equatorial plane the velocity of the electron is 1.78 ·106 m/s

5. One derivation of the plasma frequency is given in section 5.2.1, page 41, in the
lecture notes, but there are others. The (angular) plasma frequency is given
by

ωpe =

√

√

√

√

ne2

ε0me

If the electron density is n = 1012 m−3, we find

ωpe = 1.6 · 10−19

√

1012

8.85 · 10−12 9.1 · 10−31
s−1 = 5.64 · 107 s−1

or fp = ωpe/2π ≈ 9 MHz. Since the O+ ions are about 16 · 1837 times heavier
than electrons, they can be neglected. If we include them we find

ωp =

√

√

√

√

ne2

ε0

(

1

me
+

1

mO+

)

≈ ωpe(1 + 1.7 · 10−5)

which is very close to ωpe.
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6. Using the coordinate system indicated in the Figure, we find Fy = jxBG,
where BG = 50 nT is the magnetic field strength in the equatorial generator
region. This gives the perpendicular current density

jx =
Fy

BG

The parallel current can be calculated from ∂r ·j = ∂xjx+∂zjz = 0. Assuming
symmetry about the equatorial plane we have jz = 0 at z = 0, and at a point
zG above the generator region we have

jz(x, zG) = −
∫ ∞

0
∂xjx dz = −

∫ ∞

0

∂xFy

BG
dz

Using that
∫∞
0 exp−z2/L2

z dz = Lz
√

π/2 and calculating the derivative of

Fy as ∂x exp(−x2/L2
x) = −2x/L2

x exp(−x2/L2
x) we find

jz(x, zG) =
√

π
LzxF0

L2
xBG

exp

(

− x2

L2
x

)

a. To find the maximum parallel current density we put ∂xjz = 0, which
yields 1 − 2x2/L2

x = 0, or x2 = L2
x/2. Inserting this we find

|jz(zG)|max =

√

π

2

LzF0

LxBG
exp

(

−1

2

)

Putting in the numbers we find

|jz(zG)|max =

√

π

2e
· 500 · 103 10−17

50 · 103 50 · 10−9
A/m2 ≈ 1.52 nA/m2

Answer: The maximum current density is 1.52 nAm−2.

b. Outside the generator region the current is strictly field-aligned, which
from ∂r · j = 0 means that the total current in a flux tube is constant.
The area of a flux tube is inversely proportional to B, so this implies that
jz/B is constant along the field line. The ionospheric current density is
then jz(zI) = jz(zG)BI/BG, where BI = 50 µT and zI indicates a point
at 2000 km altitude. If the electron density is n, the current density is
related to the velocity vz by jz = envz, and the kinetic energy K can be
expressed as

K =
mv2

z

2
=

m

2

(

jz(zI )

en

)2

=
m

2

(

jz(zG)BI

enBG

)2

Numerically we find

K ≈ 9.1 · 10−31

2

(

1.52 · 10−9 5 · 10−7

1.6 · 10−19 105 5 · 10−10

)2

J ≈ 4.1·10−15 J ≈ 25.6 keV

Answer: The kinetic energy of the current carrying electrons is 25.6 keV.
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