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 I Introduction

Space Physics may be defined as the region of the universe where astrophysical phenomena 

can be studied  in situ, i.e., by direct measurements from spacecrafts or satellites.1 From this it 

follows that in these days the named region is limited to the Solar System.

The Solar System, being the home for mankind in the universe, inhabits besides Earth seven 

more planets, a total of more than one hundred moons orbiting these planets as well as some 

dwarf  planets  and  an  uncountable  amount  of  asteroids.  As  being neutrally  charged,  all  these 

bodies only interact with one another due to gravitational forces. Accordingly, from the point of 

Celestial Mechanics, determination of the trajectory of a given body would be impossible if one 

could not neglect the influences of almost all these bodies on the given one as a result of the 

nature of the gravitational force being proportional to the mass of and the inverse squared distance 

to these bodies. To come full circle, such a given body can of course be a spacecraft or a satellite 

so that Celestial Mechanics is also an important topic in Space Physics. 

But nevertheless, the only analytically solvable problems in Celestial Mechanics are the two-

body (Kepler's problem) and partly the circular restricted three-body problem. The last one shall 

now be the main topic in this report as nature offers us with it  a great opportunity for satellite 

measurements by making use of the Lagrangian points.

 II The Circular Restricted Three-Body Problem

 II.1 Preliminary Remarks

The three-body problem refers to three bodies which move under their mutual gravitational 

attraction. There does not exist a general analytical solution to this problem but chaotic solutions 

and numerical ones based on iterative methods.

If  two  of  the  three  bodies  move  in  circular  and  coplanar  orbits  around  their  common 

barycentre, and additionally, the third mass is small compared to the other two masses so that the 

third body does not affect the movements of the other bodies one speaks of the circular restricted 

three-body problem. In this case the two big masses move on orbits which are determined by the 

solution to the two-body problem and the remaining assignment is to make predictions for the 

1 cf. Rönnmark, Kjell: Lecture Notes on Space Physics, p. 1.
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trajectory of the third body being influenced by the gravitational field of the two big masses. This 

regime describes a good approximation for certain systems in our Solar System like a spacecraft in 

the gravitational field of Earth and the Sun or  a space probe flying to Jupiter  or Saturn being 

exposed to the gravitational  attraction of  the Sun and the planet.  An analytical  solution to the 

behaviour of the third mass can be given in the case of equilibrium points (the Lagrangian points) 

and a description of the movement can be achieved as for example in the problem of the Hill 

sphere or the zero-velocity surfaces.

 II.2 The Two-Body Problem

As some terms of  the solution to the two-body problem are used in the discussion of  the 

circular restricted three-body problem a short overview of this solution shall be given here.

With the definition

 :=G m1m2 , (1)

where  G is the gravitation constant,  m1 and  m2 are the masses of the two bodies, respectively, 

Newton's second law for the two-body problem reads

̈r =− r
r3 . (2)

Note, that eq.(1) is the equation of motion for the vector r which denotes the relative position 

between the two bodies. This equation can be solved giving the modulus of the relative position 

depending on the polar angle φ,

r  = a 1−e2
1e cos

, (3)

in  which  a is  the  semi-major  axis  and  e the  eccentricity  of  the  elliptical  orbit.  By  some 

manipulations of this equation and integration over one period2 of the orbit you can determine the 

frequency n of the orbit to

n =  
a3 . (4)

This frequency is also referred to as the mean motion.

2 cf. Murray, Dermott: Solar System Dynamics, pp.29-30 and [9].
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 II.3 Equations Of Motion

 Let us consider a reference frame with its origin in the common centre of mass and the x-axis 

along the reference line of the two heavy bodies which rotates uniformly with the angular velocity n 

(the mean motion of the heavy bodies) around the z-axis. In this reference frame the positions of 

the two heavy masses remain fixed. With the assumption that  m1 > m2 it  is now convenient to 

rescale the unit of mass so that  =G m1m2 = 1 and to define

 :=
m2

m1m2
. (5)

Furthermore,  we  introduce 1 :=Gm1 and 2 :=G m2 ,  or  in  the  rescaled  units

1 =
1


= 1− and 2 =  , respectively. With a further rescale of the unit of length so that

a = 1 we see that 12 = a = 1 . Now we are able to adjust the coordinate system in such 

a way that the body  m1 has the coordinates (x,y,z) = (-μ2,0,0) and the body  m2 the coordinates 

(x,y,z) = (μ1,0,0). 

Fig.1. A planar view of the introduced reference frame for the circular 

restricted three-body problem

The equations of motions in this reference frame for the light body at the position r = x , y , z 
then read

ẍ−2n ẏ−n2 x =−1

x2

r 1
3 2

x−1

r 2
3  , (6a) 

ÿ2n ẋ−n2 y =−1

r1
3 

2

r2
3  y , (6b)
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z̈ =−1

r 1
3

2

r 2
3  z . (6c)

In this set of  equations we see that there is a force due to the gravitational field of the heavy 

masses on the right hand side. But there are also terms on the left hand side which indicate the 

centrifugal force being proportional to the squared mean motion and the force of the Coriolis effect 

which is proportional to the body's velocity and the mean motion. As a result of the Coriolis effect 

the movement of the light body in the plane of the heavy masses' orbits is coupled whereas the 

movement in the z-direction decouples from the x- and y-direction.

 II.4 The Lagrangian Points

In  order  to  be  in  an  equilibrium  position  we  have  to  demand  that  the  conditions

ẍ = ÿ = z̈ = ẋ = ẏ = ż= 0 are simultaneously fulfilled, i.e., that all forces acting on the small 

body in the rotating frame of reference vanish. From this it is clear that there cannot be a Coriolis 

force in an equilibrium position. So we have to look for points where the gravitational force and the 

centrifugal force cancel each other. This can be done analytically, but as this would go beyond the 

scope of this report we may be content with a qualitative analysis.

By looking on the set of equations (6) we see that the condition z̈ = 0 can only be fulfilled for 

z = 0 so that the task of finding the equilibrium positions reduces to a planar problem. Furthermore, 

it follows that the centrifugal force acting on the light body always points radially outwards with 

respect to the common barycentre of the heavy masses. This makes us come to the conclusion 

that there are only a few possible positions where the radially outwards pointing centrifugal force

F Z  can be cancelled by the gravitational forces F 1 and F 2 . Obviously, three of them can 

be found on the reference line connecting the two masses m1 and m2 like it is depicted in fig.2.

Fig.2. Positions of the Lagrangian points L1, L2 and L3
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On the one hand here the gravitational  forces between the two major  masses are directed in 

opposite directions and the total gravitational force at the first Lagrangian point L1 is reduced in that 

way that it is oppositely equal to the centrifugal force. On the other hand there are the Lagrangian 

points  L2 and L3 outside each major mass where the sum of the gravitational forces cancels the 

centrifugal force. But now the symmetry of the problem suggests that there have to be two more 

equilibrium points, each of them building an equilateral triangle with the major bodies (see fig.3). 

Their existence might not be seen offhand but they are also found analytically.

Fig.3. Positions of the Lagrangian points L4 and L5

As  already  mentioned,  these  qualitatively  found  Lagrangian  points  can  also  be  derived 

analytically. Doing this one finds for the coordinates of the triangular points L4 and L5

x L4 /5 = 1/2−2 ; y L4/5 =±3
2

. (7)

The x-coordinates of the remaining equilibrium points can be given in series,

x L1 = 1−1
3
21

9
323

81
4O 5 , (8a)

x L2 = 11
3
2−1

9
3−31

81
4O 5 , (8b)

x L3 =1−2− 7
12

 7
12

2−13223
20736

3O 4 , (8c)
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where  the  parameters  introduced  are  :=  2

31 
1 /3

and  :=
2

1
,  respectively;  the  y-

coordinates are all equal to zero. Note, that all coordinates are still given in the rescaled length 

units – but to obtain the true values you simply need to multiply expressions (7) and (8) with the 

“semi-major axis” a.

An important topic which is always related to equilibrium positions is the question regarding the 

stability of these points. When asking for the linear stability of the Lagrangian points, i.e., putting 

the body in one of these points and considering a small perturbation, you find that the Lagrangian 

points L1, L2 and L3 are not stable equilibrium positions. This means that no natural body will stay in 

these points. But the triangular Lagrangian points are stable, provided, that the mass ratio of the 

two heavy masses satisfies the condition m1/m2  24.97 . A body positioned in one of these two 

Lagrangian  points  which  experiences  a  small  perturbation  will  then  perform  an  oscillatory 

movement  around  the  point.  This  is  called  libration  and  the  resulting  orbit  in  the  co-rotating 

reference frame is referred to as an tadpole orbit. If the amplitude of this motion increases it can 

result  in a movement which encloses both triangular Lagrangian points. One then speaks of a 

horseshoe orbit.

Fig.4. Tadpole orbits (on the left) and a horseshoe orbit (on the right) for a three-body 

system3

Due to the instability of the co-linear Lagrangian points no natural objects have been found at 

these points in any three-body system until today. But there are many examples for natural objects 

orbiting on or around (due to libration) the triangular Lagrangian points. The most famous of these 

are the Trojan asteroids of Jupiter. An example of tadpole orbits are the small moons Telesto and 

3 cf. [1].
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Calypso orbiting L4 and L5, respectively, of the system consisting of Saturn and the bigger moon 

Tethys.  The  moons  Janus  and  Epimetheus  are  both  on  a  horseshoe  orbit  in  the  Sun-Saturn 

system.

Finally,  I  like  to  give  two  examples  for  the  use  of  the  Lagrangian  points  in  Space  and 

Astrophysics.

Currently the spacecraft SOHO (Solar and Heliospheric Observatory) is on a halo orbit around 

the Lagrangian point  L1 of the Sun-Earth system which is approximately 1.5·106 km away from 

Earth. It is not positioned exactly at L1 as this would not be a stable position like discussed above 

and for some reason it would also complicate the communication with Earth. Nevertheless, the 

halo orbit  lies in the plane which passes through  L1 and is perpendicular to the reference line 

connecting Sun and Earth. Therefore, due to the weak forces in this plane near to L1, it does not 

need much fuel to keep the spacecraft in its orbit. Apparently, the second advantage is that the 

spacecraft always stays at the same position relative to the Sun and Earth so that there are no 

bigger objects disturbing the view onto the Sun. The three main scientific objectives of SOHO are 

to investigate the outer layer of the Sun, to make observations of the solar wind and to probe the 

interior structure of the Sun. Besides that the spacecraft was able to detect many yet unknown 

comets which crossed the craft's field of view.

The second example is the planned James Webb Space Telescope which will be positioned at 

the Lagrangian point  L2 of the Sun-Earth system. The telescope's main mission is to search for 

light from old stars and galaxies as well as to study and understand the formation of galaxies, 

planetary systems and  stars.  Due  to  several  effects  the  telescope  has  to  operate  at  infrared 

wavelengths and accordingly has to be kept at a very low and stable temperature (about 40 K). At 

this  point  the  usefulness  of  L2 appears  on  the  scene.  For  keeping  the  telescope  at  this  low 

temperature a big metalized sunshield shall be used which blocks infrared radiation. But now the 

position at L2 ensures that the two main sources of infrared radiation, Sun and Earth, all the time 

occupy roughly the same relative position in the telescope's view which will make the use of the 

sunshield most effective.

 III Summary

We have seen that the three-body problem not only is a severe mathematical problem, it also 

offers with the Lagrangian points an interesting and impressive insight on Celestial Mechanics as 

well as it plays an important role in modern research concerning Space and Astrophysics.

7



Three Body-Problem And Lagrangian Points – Thomas Münch

References

[1] Internet source: GravitySimulator.com, 

http://www.orbitsimulator.com/gravity/articles/what.html.

[2] Internet source: Image: Lagrange points.jpg, 

http://en.wikipedia.org/wiki/Image:Lagrange_points.jpg; original source: 

http://map.gsfc.nasa.gov/m_mm/ob_techorbit1.html, 31 March 2006.

[3] Internet source: James Webb Space Telescope, 

http://de.wikipedia.org/wiki/James_Webb_Space_Telescope, 11 October 2008.

[4] Internet source: James Webb Space Telescope, 

http://en.wikipedia.org/wiki/James_Webb_Space_Telescope, 11 October 2008.

[5] Internet source: Lagrange-Punkt, http://de.wikipedia.org/wiki/Lagrange-Punkt,     

10 September 2008.

[6] Internet source: SOHO, http://de.wikipedia.org/wiki/Solar_and_Heliospheric_Observatory, 

22 July 2008.

[7] Internet source: SOHO, http://en.wikipedia.org/wiki/Solar_and_Heliospheric_Observatory, 

26 August 2008.

[8] Murray, Carl D., Dermott, Stanley F.: Solar System Dynamics, Cambridge University Press, 

2000.

[9] Münch, Thomas: Himmelsmechanik (Schmidt, Jürgen), private lecture notes, Universität 

Potsdam, Potsdam, 2008.

[10] Rönnmark, Kjell: Lecture Notes on Space Physics. From the Sun to the Aurora, Umeå 

  Universitet, Umeå, 15 August 2008.

 

8

http://www.orbitsimulator.com/gravity/articles/what.html
http://en.wikipedia.org/wiki/Solar_and_Heliospheric_Observatory
http://de.wikipedia.org/wiki/Solar_and_Heliospheric_Observatory
http://de.wikipedia.org/wiki/Lagrange-Punkt
http://en.wikipedia.org/wiki/James_Webb_Space_Telescope
http://de.wikipedia.org/wiki/James_Webb_Space_Telescope
http://map.gsfc.nasa.gov/m_mm/ob_techorbit1.html
http://en.wikipedia.org/wiki/Image:Lagrange_points.jpg

	 I Introduction
	 II The Circular Restricted Three-Body Problem
	 II.1 Preliminary Remarks
	 II.2 The Two-Body Problem
	 II.3 Equations Of Motion
	 II.4 The Lagrangian Points

	 III Summary

