A proton's way from the Sun to Umeå

Boris Lemmer

22th of October 2007

Let's follow the journey of a solar proton!

Let us start from the beginning:

Where do they come from?

→ fusion reaction in the core of the Sun

Two main processes, converting mass into energy due to Einstein's

 $E = mc^2$

Fusion and fission: Why and when?

Proton-proton chain reaction

- Most important reaction for stars like the Sun or smaller
- Hydrogen is converted into Helium

CNO Cycle

Important for bigger stars, but quite uninteresting for our Sun (only 1.6% of its energy generation)

Floating with the solar wind

Protons leave the Sun constantly (mass reduction: $10^9 \frac{kg}{s}$). The way varies:

- Slow solar wind (closed field lines, 250-400 $\frac{\rm km}{\rm s} \doteq 1 keV$, $11 \frac{\rm particles}{\rm cm^3}$)
- Fast solar wind (open field lines, 400-800 $\frac{\text{km}}{\text{s}} \doteq 3 \text{keV}$, $3 \frac{\text{particles}}{\text{cm}^3}$)
- Special events (Coronal mass ejections, solar flares (up to MeV range!))

Solar flares

Boris Lemmer

A proton's way from the Sun to Umeå

Solar flares

- Violate explosions, found in the area of Sunspots
- Energy of over 10²⁰ J is released (billion megatons of TNT)
- Bright flash of X-rays named them 'flare'

Coronal mass ejections

Coronal mass ejections

- Large amount of ejected particles ($\approx 10^{12}$ kg, primarily protons)
- 1-6 CMEs per day, depending on phase of solar circle
- Unclear: Dependency between solar flare and CME.

Idea: flare drives CME

Problem: Only 60% of flares connected with CMEs. Sometimes

CMEs start earlier then flares.

The great proton storm of 20.01.2005

- Solar and Heliospheric Observatory (SOHO) observed proton storm with 100 MeV peak
- Four powerful flares from sunspot NOAA720 were followed my giant final flare
- Straight connection from spot to earth. Acceleration process still not completely understood.

Where are the protons going?

- Most of them are just kicked into outer space
- If directed to earth, could they hit an astronaut?
- What will happen when they reach the earth?

A proton flux is dangerous radiation!

- Electromagnetic interaction with matter can cause light emission (by excitation of atoms) and ionization
- Ionization can change the structure of complex molecules
- Amount of potential damage must be described and measured

The Bethe-Bloch formula

Effective description of energy deposition in matter by the Bethe-Bloch formula:

$$-\frac{dE}{dx} = D\rho Z^2 \frac{Z_A}{A_A} \frac{1}{\beta^2} \left[\ln \left\{ \frac{2m_e c^2 \beta^2 \gamma^2}{I} - \beta^2 \right\} \right] \frac{\text{MeV}}{\text{m}}$$

 $D=0.0307 {
m MeV} {{
m m}^2 \over {
m kg}}/
ho$: dense of matter

 Z_A, A_A : charge and mass number of absorber

Z: particle charge/ m_e : electron mass

Integration guides us to the penetration depth.

Protons with low energies can be absorbed by a sheet of paper, but high energy particles have to be shielded seriously (100 MeV protons penetrate 11cm of water!).

Protons have high ionization density!

Damage in a cell

Useful units in radiation classification:

- Absorption dose: 1 Gray $(1Gy = 1\frac{J}{kg})$
- Additional information about kind of damage considered by the absorption dose:
 - 1 Sievert $(1Sv = factor \cdot 1Gy)$ The 'factor' varies between 1 (electrons) and 20 (neutrons with special energy)
- Also used: effective dose. Considers also the type of organs being damaged.

Problems for our astronaut

- Ionized atoms can create new compounds like the toxic H_2O_2
- DNA in the cell core might get damaged
- Cell can either die or (worse!) mutate

Radiation Sickness

This is how you suffer from radiation:

- 200 mSv Change of blood count
- 0,2-1 Sv Vomiting, low blood counts, temporary male sterility
- 1-2 Sv 10% fatality after 30 days
- 2-3 Sv 35% fatality, loss of hair all over the body
- 3-4 Sv 50% fatality, uncontrollable bleeding
- more than 6 Sv intense medical care needed immediately (bone marrow transplant)

All values for acute exposure!

Average exposure: 4 mSv/year (2/2 medical/natural)

Astronaut out in the storm on 20.01.2005

What about the 100 MeV protons from the 20.01.2005 storm?

- Due to 11 cm water penetration: Shielding is needed
- ullet Shielding of the ISS decreased exposure to $\leq 10~\text{mSv}$
- Standing on the moon, only protected by suit: 500 mSv
- Worse storm on 02.08.1972, right between Apollo 16 and 17 mission
- 4000 mSv on the moon, 350 mSv in the Apollo command module

Compare shielding $(\frac{g}{cm^2})$:

ISS: 15 / Apollo module: 7 / Spacesuit: 0,25

Electronic devices are also affected!

No sensitive DNA, but also no mechanism to repair themselves!

Satellite damage

- **Deep dielectric charging:** Creation of large potentials by ionization from the protons.
- Damage conditions: Flux of 2 MeV particles $\geq 3 \cdot 10^8$ per cm^2 , day and sr for 3 consecutive days
- Consequences: Exceeded breakdown potential, destroyed semiconductors, loss of bits
- Therefore: Usage of 'old fashion computer'

The danger of GICs

During a proton storm: Change in \vec{B} . Faraday's law of induction

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

predicts induced currents...

...if there is a conductor. Is there one on earth which can be used? Sure! Power transmission grids, oil pipelines, railways, telephone cables...

The danger of GICs

What can happen: Loss of power in the Hydro-Quebec power grid for over nine hours on 13 March 1989.

Weather forecast

To prepare for loss of communication and to safe astronauts: Forecast of proton storms needed.

Possible, as radiation and electrons arrive earlier.

Dangerous particles, but beautiful lights

Dangerous particles, but beautiful lights

Green light comes from electron reactions:

$$O(^1S) \rightarrow O(^1D) + \gamma(557,7nm[green])$$

Protons prefer

$$N_2 + p \rightarrow N_2^{+*} + e + p$$

but they also induce secondary electrons (N_2^{+*} is an excited vibration state, emits UV light).

Differences between electron and proton Auroras

- Diffuseness After neutralization: no alignment along magnetic field.
- UV light Most proton events cannot be seen with human eyes

Help: IMAGE spacecraft

Electromagnetic disturbances on earth Weather forecast Dangerous particles, but beautiful lights The proton in Umeå

Arrival in Umeå

Oh, I'm sorry: The protons will never reach the ground :-) And if one would, you won't realize...