Measurement of Particle Fluxes in Space
Space Physics 2006

Daniel Schick
Umeå University

October 12, 2006
Overview

1 Introduction

2 Cosmic Rays

3 Measurement Methods
 - Indirect Methods
 - Direct Methods
 - Method 1
 - Method 2

4 Summary
Overview

1 Introduction

2 Cosmic Rays

3 Measurement Methods
 • Indirect Methods
 • Direct Methods
 • Method 1
 • Method 2

4 Summary
in 1912 Victor Franz Hess discovered so-called Cosmic Rays (*Nobel Prize in 1936*)

in 1923 Walther Bothe and Werner Kohlhörster showed that cosmic rays consist of electric charged particles
Introduction

- In 1912 Victor Franz Hess discovered so-called Cosmic Rays (*Nobel Prize in 1936*).
- In 1923 Walther Bothe and Werner Kohlhörster showed that cosmic rays consist of electric charged particles.
- Until the 1950’s cosmic rays were the only source of elementary particles because no large particle accelerators were available.
in 1912 Victor Franz Hess discovered so-called Cosmic Rays (*Nobel Prize* in 1936)

in 1923 Walther Bothe and Werner Kohlhörster showed that cosmic rays consist of electric charged particles

until the 1950’s cosmic rays were the only source of elementary particles because no large particle accelerators were available
Overview

1. Introduction

2. Cosmic Rays

3. Measurement Methods
 - Indirect Methods
 - Direct Methods
 - Method 1
 - Method 2

4. Summary
What are Cosmic Rays?

Cosmic rays are charged particles!

- 2% electrons
- 98% atomic nuclei
 - 87% protons
 - 12% Helium nuclei
 - 1% heavy atomic nuclei

Until today all natural nuclei from hydrogen to actinides were detected.
What are Cosmic Rays?

Cosmic rays are charged particles!

- 2% electrons
- 98% atomic nuclei
What are Cosmic Rays?

Cosmic rays are charged particles!

- 2% electrons
- 98% atomic nuclei
 - 87% protons

Daniel Schick
(Umeå Universitet)
Measurement of Particle Fluxes in Space
October 12, 2006
Cosmic Rays

What are Cosmic Rays?

Cosmic rays are charged particles!

- 2% electrons
- 98% atomic nuclei
 - 87% protons
 - 12% Helium nuclei

Daniel Schick (Umeå Universitet)

Measurement of Particle Fluxes in Space

October 12, 2006
Cosmic rays are charged particles!

- 2% electrons
- 98% atomic nuclei
 - 87% protons
 - 12% Helium nuclei
 - 1% heavy atomic nuclei
What are Cosmic Rays?

Cosmic rays are charged particles!

- 2% electrons
- 98% atomic nuclei
 - 87% protons
 - 12% Helium nuclei
 - 1% heavy atomic nuclei

until today all natural nuclei from hydrogen to actinides were detected
What are Cosmic Rays?

Cosmic rays are charged particles!

- 2% electrons
- 98% atomic nuclei
 - 87% protons
 - 12% Helium nuclei
 - 1% heavy atomic nuclei
- until today all natural nuclei from hydrogen to actinides were detected
Energy Spectrum

- huge energetic spectrum
- start at approx. 30 GeV (earth’s magnetic field)
Energy Spectrum

- huge energetic spectrum
- start at approx. 30 GeV (earth’s magnetic field)
- end with 10^{20} eV
Energy Spectrum

- huge energetic spectrum
- start at approx. 30 GeV (earth’s magnetic field)
- end with 10^{20} eV
- GZK-Cutoff?
Energy Spectrum

- huge energetic spectrum
- start at approx. 30 GeV (earth’s magnetic field)
- end with 10^{20} eV
- GZK-Cutoff?
We divide cosmic rays according to their origin!
Origin

- **our** sun is the source for **solar** cosmic rays
- during sun eruptions particles can be accelerated up to the GeV region
Origin

- our sun is the source for **solar** cosmic rays
- during sun eruptions particles can be accelerated up to the GeV region
Origin

- main part of up to 10^{18} eV seems to have a galactic origin
- most likely cosmic particles are produced and accelerated during supernova explosions
Cosmic Rays

Origin

- main part of up to 10^{18} eV seems to have a **galactic** origin
- most likely cosmic particles are produced and accelerated during supernova explosions

[Image of a cosmic nebula]
Origin

- no sources for particles with 10^{20} eV in our galaxy
- they must have an extragalactic origin
Origin

- no sources for particles with 10^{20} eV in our galaxy
- they must have an extragalactic origin
- no sources have been discovered yet
Cosmic Rays

Origin

- no sources for particles with 10^{20} eV in our galaxy
- they must have an extragalactic origin
- no sources have been discovered yet
- candidates are cosmic jets of black holes or of pulsars or shock fronts of supernova explosions
Cosmic Rays

Origin

- no sources for particles with 10^{20} eV in our galaxy
- they must have an extragalactic origin
- no sources have been discovered yet
- candidates are cosmic jets of black holes or of pulsars or shock fronts of supernova explosions
Open Questions

Although we have been studying cosmic rays for over 90 years now there still are many not completely answered questions!

- What are the sources of cosmic rays and how are the particles accelerated to such high energies?
Open Questions

Although we have been studying cosmic rays for over 90 years now there still are many not completely answered questions!

- What are the sources of cosmic rays and how are the particles accelerated to such high energies?
- How do the cosmic rays propagate through the interstellar medium and do they change their properties during the propagation?
Although we have been studying cosmic rays for over 90 years now there still are many not completely answered questions!

- What are the sources of cosmic rays and how are the particles accelerated to such high energies?
- How do the cosmic rays propagate through the interstellar medium and do they change their properties during the propagation?
- What are the highest possible energies of cosmic rays?
Open Questions

Although we have been studying cosmic rays for over 90 years now there still are many not completely answered questions!

- What are the sources of cosmic rays and how are the particles accelerated to such high energies?
- How do the cosmic rays propagate through the interstellar medium and do they change their properties during the propagation?
- What are the highest possible energies of cosmic rays?
Overview

1 Introduction

2 Cosmic Rays

3 Measurement Methods
 - Indirect Methods
 - Direct Methods
 - Method 1
 - Method 2

4 Summary
Direct Methods

- to detect primary cosmic rays measurements should take place in space
- but already 40 km is enough because of the lower air density
Direct Methods

- to detect primary cosmic rays measurements should take place in space
- but already 40 km is enough because of the lower air density
- balloon flights are cheap and simple
Direct Methods

- to detect primary cosmic rays measurements should take place in space
- but already 40 km is enough because of the lower air density
- balloon flights are cheap and simple
- balloons can have a volume of about 10^6 m^3 and can lift up to 3000 kg
Direct Methods

- to detect primary cosmic rays measurements should take place in space
- but already 40 km is enough because of the lower air density
- balloon flights are cheap and simple
- balloons can have a volume of about 10^6 m^3 and can lift up to 3000 kg
- disadvantage is their relatively short flight duration
Direct Methods

- to detect primary cosmic rays measurements should take place in space
- but already 40 km is enough because of the lower air density
- balloon flights are cheap and simple
- balloons can have a volume of about 10^6 m^3 and can lift up to 3000 kg
- disadvantage is their relatively short flight duration
Direct Methods

- better, but of course, much more expensive are satellites, the ISS or space probes
- possible to measure over years and extend the energy spectrum to higher and lower energies
Direct Methods

- better, but of course, much more expensive are satellites, the ISS or space probes
- possible to measure over years and extend the energy spectrum to higher and lower energies
We want to measure:

- the type of the particle
What to measure?

We want to measure:

- the **type** of the particle
- its mass
We want to measure:

- the **type** of the particle
 - its **mass**
 - its **charge**
What to measure?

We want to measure:

- the **type** of the particle
 - its mass
 - its charge
- the **energy** of the particle
What to measure?

We want to measure:

- the **type** of the particle
 - its **mass**
 - its **charge**
- the **energy** of the particle
Method 1

- a *channel electron multiplier* can detect charged particles
- *Micro Channel Plates* consist of thousands of channel electron multipliers (diameter of 10 µm, thickness not more than 1 mm)
Method 1

- A *channel electron multiplier* can detect charged particles.
- *Micro Channel Plates* consist of thousands of channel electron multipliers (diameter of $10 \mu m$, thickness not more than 1 mm).
Method 1

- particles can be selected by their energy per charge with an electrostatic analyser.
Method 1

- Particles can be selected by their energy per charge with an electrostatic analyser.

Electrostatic Force:

\[
\frac{m v^2}{r} = q E
\]
Method 1

- particles can be selected by their energy per charge with an electrostatic analyser

Electrostatic Force:

\[\frac{m v^2}{r} = q E \]

- to get information about the mass of the particles we use a magnetic spectrometer
Method 1

- particles can be selected by their energy per charge with an electrostatic analyser

Electrostatic Force:

\[
\frac{m v^2}{r} = q E
\]

- to get information about the mass of the particles we use a magnetic spectrometer
Method 1

- particles can be selected by their energy per charge with an electrostatic analyser.

Electrostatic Force:

\[\frac{m v^2}{r} = q \, E \]

- to get information about the mass of the particles, we use a magnetic spectrometer.

Lorentz Force:

\[F_L = q \, v \times B \]
Method 1

- particles can be selected by their energy per charge with a electrostatic analyser

Electrostatic Force:

\[
\frac{m v^2}{r} = q E
\]

- to get information about the mass of the particles we use a magnetic spectrometer

Lorentz Force:

\[
F_L = q v \times B
\]

- A MCP at the end of the spectrometer measures the bending radius of the particles
Method 1

- particles can be selected by their energy per charge with a electrostatic analyser

Electrostatic Force:

\[
\frac{m v^2}{r} = q E
\]

- to get information about the mass of the particles we use a magnetic spectrometer

Lorentz Force:

\[
F_L = q v \times B
\]

- A MCP at the end of the spectrometer measures the bending radius of the particles
- all together is called *Three-dimensional Ion Composition Spectrometer*
Method 1

- particles can be selected by their energy per charge with a electrostatic analyser

Electrostatic Force:

\[\frac{m v^2}{r} = q E \]

- to get information about the mass of the particles we use a magnetic spectrometer

Lorentz Force:

\[F_L = q v \times B \]

- A MCP at the end of the spectrometer measures the bending radius of the particles
- all together is called *Three-dimensional Ion Composition Spectrometer*
Three-dimensional Ion Composition Spectrometer
Method 2

- resolution of the TICS is limited because of the MCP
- energy range is limited by the electrostatic field
Method 2

- resolution of the TICS is limited because of the MCP
- energy range is limited by the electrostatic field
- another measurement method is the following combination of devices:
Method 2

- resolution of the TICS is limited because of the MCP
- energy range is limited by the electrostatic field
- another measurement method is the following combination of devices:
Cherenkov Detector

Cherenkov Effect:

- A charged particle in a transparent medium with higher velocity than the velocity of light in this medium will produce a light cone.
- The aperture angle θ of that cone can be measured.

$$\cos \theta = \frac{1}{\beta n}$$
Cherenkov Detector

Cherenkov Effect:
- a charged particle in a transparent medium with higher velocity than the velocity of light in this medium will produce a light cone
- the aperture angle θ of that cone can be measured
- the velocity follows with a simple equation

$$\cos \theta = \frac{1}{\beta n}$$
Cherenkov Detector

Cherenkov Effect:
- a charged particle in a transparent medium with higher velocity than the velocity of light in this medium will produce a light cone
- the aperture angle θ of that cone can be measured
- the velocity follows with a simple equation

\[
\cos \theta = \frac{1}{\beta n}
\]
Time of Flight

Scintillators:
- a charged particle will produce photons in scintillators
- measured signal strength is proportional to the energy loss of the particle in the scintillator
Time of Flight

Scintillators:

- A charged particle will produce photons in scintillators.
- Measured signal strength is proportional to the energy loss of the particle in the scintillator.
- The Bethe-Bloch formula tells us the absolute value and sign of the charge of the incoming particle.
Time of Flight

Scintillators:
- a charged particle will produce photons in scintillators
- measured signal strength is proportional to the energy loss of the particle in the scintillator
- the Bethe-Bloch formula tells us the absolute value and sign of the charge of the incoming particle
Time of Flight

- 2 scintillators in a row with a known distance between them can be used to determine the velocity of a particle.
- They also start and stop the trigger signal for all instruments between them.
Time of Flight

- 2 scintillators in a row with a known distance between them can be used to determine the velocity of a particle
- they also start and stop the trigger signal for all instruments between them
- they detect particles that enter the experiment from the wrong side, so-called Albedo particles
Time of Flight

- 2 scintillators in a row with a known distance between them can be used to determine the velocity of a particle.
- They also start and stop the trigger signal for all instruments between them.
- They detect particles that enter the experiment from the wrong side, so-called **Albedo** particles.
- ToF is simple and easy to handle and proper for low energies.
Time of Flight

- 2 scintillators in a row with a known distance between them can be used to determine the velocity of a particle.
- They also start and stop the trigger signal for all instruments between them.
- They detect particles that enter the experiment from the wrong side, so-called Albedo particles.
- ToF is simple and easy to handle and proper for low energies.
Magnetic Rigidity

- fast, charged particle’s trajectory will bend in a magnetic field because to the Lorentz force

\[R = \frac{\gamma \beta m c^2}{B z e} \]
Magnetic Rigidity

- fast, charged particle’s trajectory will bend in a magnetic field because to the Lorentz force

\[R = \frac{\gamma \beta m c^2}{B z e} \]
Magnetic Rigidity

- fast, charged particle’s trajectory will bend in a magnetic field because of the Lorentz force

Magnetic Rigidity

\[R = \frac{\gamma \beta m c^2}{B \, z \, e} \]

- velocity and exact charge of the particle is known (Cherenkov detector, time of flight measurement)
Magnetic Rigidity

- fast, charged particle’s trajectory will bend in a magnetic field because of the **Lorentz force**

\[R = \frac{\gamma \beta m c^2}{B z e} \]

- velocity and exact charge of the particle is known (Cherenkov detector, time of flight measurement)
- the magnetic field is artificial \(\rightarrow \) we know its absolute value
Magnetic Rigidity

- fast, charged particle’s trajectory will bend in a magnetic field because of the Lorentz force

\[R = \frac{\gamma \beta m c^2}{B ze} \]

- velocity and exact charge of the particle is known (Cherenkov detector, time of flight measurement)
- the magnetic field is artificial → we know its absolute value
- just have to know the bending radius \(R \) of the particles trajectory
Magnetic Rigidity

- fast, charged particle’s trajectory will bend in a magnetic field because to the Lorentz force

Magnetic Rigidity

\[R = \frac{\gamma \beta m c^2}{B z e} \]

- velocity and exact charge of the particle is known (Cherenkov detector, time of flight measurement)
- the magnetic field is artificial → we know its absolute value
- just have to know the bending radius \(R \) of the particles trajectory
arrays of *silicon microstrip detectors* are better to detect the trajectory of the particle than drift chambers.

strong electromagnet around this array will cause a bending of the trajectory and the magnetic rigidity can be measured.
Magnetic Spectrometer

- arrays of *silicon microstrip detectors* are better to detect the trajectory of the particle than drift chambers
- strong electromagnet around this array will cause a bending of the trajectory and the magnetic rigidity can be measured
- the electromagnet and the array of silicon microstrip detectors is also called a magnetic spectrometer
Magnetic Spectrometer

- arrays of *silicon microstrip detectors* are better to detect the trajectory of the particle than drift chambers
- strong electromagnet around this array will cause a bending of the trajectory and the magnetic rigidity can be measured
- the electromagnet and the array of silicon microstrip detectors is also called a magnetic spectrometer

![Diagram of charged particle in silicon microstrip detectors](Image)
Overview

Cherenkov detector
upper time of flight detector
array of silicon microstrip detectors
lower time of flight detector
Overview

1 Introduction

2 Cosmic Rays

3 Measurement Methods
 - Indirect Methods
 - Direct Methods
 - Method 1
 - Method 2

4 Summary
measurement methods of cosmic rays are quite well developed

nevertheless we still do not know much about these particles
measurement methods of cosmic rays are quite well developed
nevertheless we still do not know much about these particles
many different experiments on the ground, in the atmosphere and in space were realised or will be realised soon
measurement methods of cosmic rays are quite well developed
nevertheless we still do not know much about these particles
many different experiments on the ground, in the atmosphere and in space were realised or will be realised soon
maybe we will then get more information on:
measurement methods of cosmic rays are quite well developed
nevertheless we still do not know much about these particles
many different experiments on the ground, in the atmosphere and in space were realised or will be realised soon
maybe we will then get more information on:
 - the formation of the universe
measurement methods of cosmic rays are quite well developed
nevertheless we still do not know much about these particles
many different experiments on the ground, in the atmosphere and in space were realised or will be realised soon
maybe we will then get more information on:
 - the formation of the universe
 - the origins of high energy particles with energies of up to 10^{20} eV
measurement methods of cosmic rays are quite well developed
nevertheless we still do not know much about these particles
many different experiments on the ground, in the atmosphere and in space were realised or will be realised soon
maybe we will then get more information on:
 the formation of the universe
 the origins of high energy particles with energies of up to 10^{20} eV
 the composition of other galaxies
measurement methods of cosmic rays are quite well developed
nevertheless we still do not know much about these particles
many different experiments on the ground, in the atmosphere and in space were realised or will be realised soon
maybe we will then get more information on:
 • the formation of the universe
 • the origins of high energy particles with energies of up to 10^{20} eV
 • the composition of other galaxies
Kolanoski, Hermann: *Einführung in die Astroteilchenphysik*
Institut für Physik, Humboldt-Universität zu Berlin

Göbel, Holger: *Analyse des CAPRICE97 Flugzeitzählers und Bestimmung des Proton/Myon Verhältnisses für den Impulsbereich von 0,4 - 1,1 GeV/c in einer Höhe von 1270 m ü. N. N.*
Universität-Gesamthochschule Siegen, Fachbereich Physik, 1997

Rönnmark, Kjell: *Lecture Notes on SPACE PHYSICS - From the Sun to the Aurora*
Umeå Universitet, Institutionen för fysik, 2003

Schaller, Sven: *Leistungsmerkmale der HERA-B Vertexdetektors und Suche nach semileptonischen Charm-Zerfällen*
Ruprecht-Karls-Universität Heidelberg, Naturwissenschaftliche-Mathematische Gesamtfakultät, 2001

http://www.astroteilchenphysik.de

http://www.wikipedia.org
Thank you for your attention!