
Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Outline

Introduction

Program details

How to store positions and velocities

Compiling—header files and make

Organizing things into directories

Another look at the read args function

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Aims with computer lab “Stochastic simulations”

Main aim:

I To get a better understanding of the different simulation methods.

(For the implementation one needs to think things through in detail.)

A number of additional aims:

I To get experience with using Linux computers—the kinds of systems used at the
supercomputer centers.

I To get more experience with programming in C.

I To see how to use a single source code for several somewhat different programs.

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

How to run the program

$./sim N=64 rho=0.5 T=1.0 read=0064_r0.500_T1.000_start deltat=0.011 nblock=10 run

Read from conf/0064_r0.500_T1.000_start with data for 64 particles

--- Molecular dynamics of a Lennard-Jones gas ---

Gas with 64 particles at rho = 0.5, T = 1, alpha = 0, deltat = 0.011, L = 11.314

Potential energy = -1.33933

Kinetic energy = 1.04104

Equilibrate: 1000...done

Simulate 10 blocks x 1000 samples each: 1 2 3 4 5 6 7 8 9 10

Configuration with 64 particles written to conf/0064_r0.500_T1.000_alpha0.00_dt011

Potential E: -1.29895 +/- 0.000600459

Kinetic E : 1.00165 +/- 0.000617618

Total E : -0.297295 +/- 0.000243392

Pressure : 0.58852 +/- 0.00198527

$

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Program structure
void run_simulation(Par *par, double *atoms) {

// 1 Initialization... 2 Equilibration... 3 Production run:

for (iblock = 0; iblock < par->nblock; iblock++) {

... // step forward in time

... // measure!

}

// 4 Print out results

}

int read_args(Par *par, char *arg) {

if (!strcmp(arg, "N")) {

par->n = strtol(s, NULL, 10);

return 1;

}

if (!strcmp(arg, "run")) {

run_simulation(par, atoms);

return 1;

}

return 0;

}

int main(int argc, char *argv[])

{

Par par; // Initialize parameter struct

par.rho = 0.6;

for (iarg = 1; iarg < argc; iarg++)

if (!read_args(&par, argv[iarg]))

exit(EXIT_FAILURE);

exit(EXIT_SUCCESS);

}
Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Simple “atomic” variables. . . reading input

• Define variables before using them:

int x = 4; // Four bytes

char letter; // One byte

double val; // Eight bytes

letter = ’a’;

val = 3.14 / x;

• Input using the scanf() function. To print out use printf():

int main()

{

int this_is_a_number;

printf("Please enter a number: ");

scanf("%d", &this_is_a_number);

return 0;

}

• Input from the command line: With “./prog 3.5”:

int main(int argc, char *argv[])

{

double rho;

rho = strtod(argv[1], NULL); // strtod = string to double

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Functions in C

• Simple example program:

#include <stdio.h>

int mult(int x, int y); // Declaration of mult (prototype)

int main()

{

int x = 12;

int y = 19;

int result;

result = mult(x, y);

printf("The product of your two numbers is %d\n", result);

}

int mult(int x, int y) // Definition of mult

{

return x * y;

}

The compiler needs information about the functions:

I In /usr/include/stdio.h there is a prototype for printf.

I The function mult is defined at the top of the example program.

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Error message when the prototype declaration is missing
• Consider a file where #include <stdio.h> is missing.

int main() {

printf("Just a simple text.\n");

}

• A compilation will give an error message:

sarek:$ make test

cc test.c -o test

test.c: In function main:

test.c:2:3: warning: implicit declaration of function printf [-Wimplicit-function-declaration]

printf("Just a simple text.\n");

^~~~~~

test.c:2:3: warning: incompatible implicit declaration of built-in function printf

test.c:2:3: note: include <stdio.h> or provide a declaration of printf

To fix that:

#include <stdio.h>

int main() {

printf("Just a simple text.\n");

}

and the compilation works OK:

sarek:$ make test

cc test.c -o test

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Pointers

A pointer is an address where things can be stored.
Compare with a number of drawers. We can put the shirt in the third drawer.

• To declare pointers:

int *pointer1, *pointer2;

• To use pointers:

int main()

{

int x = 51; // A normal integer

int *p; // A pointer to an integer

p = &x; // Make p contain the address to x

printf("Please enter a number: ");

scanf("%d", &x); // Put a value in x (send the address to scanf)

scanf("%d", p); // This is the same

printf("%d\n", *p); // Note the use of "*p" to get the value

• To allocate memory for use:

int *ptr = malloc(sizeof(int));

... // use the memory...

free (ptr); // and return it again to the system.

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Arrays
• We could use arrays “x” and “y” to store positions and velocities of 64 particles

double x[64], y[64];

double vx[64], vy[64];

int i;

for (i = 0; i < 64; i++) {

x[i] = x[i] + delta_t * vx[i]; // Step forward in time

y[i] = y[i] + delta_t * vy[i];

vx[i] = ...

• For a more flexible solution with “n” particles:

double *x, *y;

double *vx, *vy;

x = malloc(n * sizeof(double));

y = malloc(n * sizeof(double));

vx = malloc(n * sizeof(double));

for (i = 0; i < n; i++) {

x[i] = x[i] + delta_t * vx[i]; // Step forward in time

y[i] = y[i] + delta_t * vy[i];

vx[i] = ...

• It is sometimes convenient to be able to initialize an array:

int fibo[8] = {1, 2, 3, 5, 8, 13, 21, 34};

double *vx, *vy;

x = malloc(n * sizeof(double));

y = malloc(n * sizeof(double));

vx = malloc(n * sizeof(double));

for (i = 0; i < n; i++) {

x[i] = x[i] + delta_t * vx[i]; // Step forward in time

y[i] = y[i] + delta_t * vy[i];

vx[i] = ...

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Strings
Arrays of characters—strings—are used a lot.
They contain both the visible character and an end-of-string character, the NULL character.

• There is a special syntax for strings

// Single quotes for characters and double quotes for strings.

char str[15] = {’A’, ’ ’, ’s’, ’h’, ’o’, ’r’,’t’, ’ ’, ’s’, ’t’, ’r’, ’i’, ’n’, ’g’, ’\0’};

char str[15] = "A short string";

// To print out a string, use %s as a format specifier.

printf("%s", str);

• Quite a few functions in the C library work on strings:

strcmp(str1, str2); // case sensitive comparison for getting alphabetic order

// To check if arg is equal to "rho" we could do:

int check;

check = strcmp(arg, "rho");

if (check == 0)

....

// The if statement can instead be written with "!" which means "not"

if (!check)

...

// A different way to do the same thing

if (!strcmp(arg, "rho"))

....

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Structures
It is often convenient to have a single name that refers to a group of a related values. We will use that for the
parameters we use in our simulation program. They are put together in the struct data type:

typedef struct Par {

int n; // number of particles

double rho; // density,

double t; // temperature,

double deltat; // time step

} Par;

• When we have a variable of type “struct Par” the syntax is “par.n”

int main(int argc, char *argv[])

{

Par par; // Here "par" is a variable of type "struct Par"

par.n = 64;

par.rho = 0.6;

par.deltat = 0.01;

read_args(&par, arg));

• but in most functions “par” is instead a pointer, and we write “par->n”

int read_args(Par *par, char *arg)

{

if (!strcmp(arg, "N")) {

par->n = strtol(s, NULL, 10);

return 1;

}

if (!strcmp(arg, "rho")) {

par->rho = strtod(s, NULL);

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

c

kanske

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Program structure
void run_simulation(Par *par, double *atoms) {

// 1 Initialization... 2 Equilibration... 3 Production run:

for (iblock = 0; iblock < par->nblock; iblock++) {

... // step forward in time

... // measure!

}

// 4 Print out results

}

int read_args(Par *par, char *arg) {

if (!strcmp(arg, "N")) {

par->n = strtol(s, NULL, 10);

return 1;

}

if (!strcmp(arg, "run")) {

run_simulation(par, atoms);

return 1;

}

return 0;

}

int main(int argc, char *argv[])

{

Par par; // Initialize parameter struct

par.rho = 0.6;

for (iarg = 1; iarg < argc; iarg++)

if (!read_args(&par, argv[iarg]))

exit(EXIT_FAILURE);

exit(EXIT_SUCCESS);

}
Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

A flexible code
Simplest approach: use arrays x, y, vx, vy, fx, fy for positions and forces. For three dimensions, also include arrays
z, vz, and fz.:
To calculate {F} from {r} we would need different functions in 2D and 3D but this is no good idea.

I 2D: forces_from_pos(par, x, y, fx, fy),
I 3D: forces_from_pos(par, x, y, z, fx, fy, fz),

The code uses a more flexible solution:
I The same code should work for both two and three (and higher) dimensions.
I Some program versions use both r and v, other only use r.
I Introduce df = df = the number of degrees of freedom per particle = d or 2d .

Store everything in array atoms that contains N × df values:

double *atoms;

atoms = malloc(par->n * par->df * sizeof(double));

Variables for the preprocessor:
I D = dimensionality, integer > 0,
I VEL — should be defined if the velocity variables are used.

Define pos and perhaps also vel:

double *pos = atoms;

#ifdef VEL

double *vel = atoms + par->n * D; // The second half of the array

#endif

in 2D: (pos[0], pos[1], pos[2], pos[3]...) = x0, y0, x1, y1, . . .
Generally speaking, xi = pos[D * i] and yi = pos[D * i + 1].

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Arrays and pointers

• Consider a function with two arguments: number of particles and an array with positions:

void do_nothing(int n, double *pos) {

for (i = 0; i < n; i++) {

double *ipos;

ipos = pos + D * i;

...

}

}

There are then several ways to access the x coordinate of particle i :

I pos[D * i]

I ipos[0] — use the pointer ipos which points to the memory where the positions of particle i are stored

I *(pos + D * i) — with “pointer arithmetics”

• A confusing detail:

// Short form of writing:

double *ipos = pos + D * i;

// Here *ipos is not dereferencing ipos,

// instead consider ’*’ to be a part of the type declaration

// ipos is of type "double *"

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Dynamics

Langevin dynamics:
v̇i = Fi − αvi + ζi

In common.c: The function step(par, atoms, force) calls functions for the dynamics.

1. forces_from_pos(par, pos, force) — calculate {F} from {r},

2. langevin_forces(par, vel, force) — add the Langevin terms to {F},

3. vel_from_force(par, vel, force) — step forward: vi + Fi∆t → vi ,

4. pos_from_vel(par, pos, vel) — new position: ri + vi∆t → ri .

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Force calculations

The functions behind the force calculations are:

I double distance(double L, double r1, double r2)

the one-dimensional distance, using periodic boundary conditions.
Here r1 and r2 are the coordinates of particle 1 and 2, e.g. x1 and x2.

I double dist2(double *L, double *p1, double *p2, double *dist)

returns the distance squared and the vector dist, when peridic boundary conditions are considered.
Here p1 and p2 are pointers to the position vectors,

I force_magnitude(double r2)

calculates the magnitude of the force based on the distance squared between two particles using the
Lennard-Jones interaction.

I void one_force(f, r2, dist)

calculates the force vector.

I forces_from_pos

calculates {F} with a double loop over i and j

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Header files

By itself the C language doesn’t contain much and it is therefore necessary to get access to external library
functions. For the compiler to know about these functions they need to be declared in some header files and this is
done through statements as below: (Files in /usr/include.)

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

There are also often user-defined header files:

#include "define.h"

#include "sim.h"

They typically contain statements like

extern void one_force(double *f, double r2, double *dist);

which are needed by the compiler if the code is split into more than one source file.

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Compiling with make

The most common way to compile in a Linux system is by just typing “make” or “make program-name”.
The make program uses a file called Makefile in order to know what to do. Key statements in the Makefile are
dependencies which can look like

sim: sim.o ran.o common.o config.o

which means that sim depends on “sim.o ran.o common.o config.o” and therefore needs to be regenerateed (in
some way) if any of the “.o”-files has been made more recently.

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

. . . compiling with make

There are two different ways to use “make”:

1. Include the command that should be used to generate sim from the “.o”-files in the Makefile:

sim: sim.o ran.o common.o config.o

gcc sim.o ran.o common.o config.o -lm -o sim

2. To make use of the built-in knowledge of “make”. One just needs to specify some flags:

CFLAGS = -g -O3

CPPFLAGS = -I.

LOADLIBES = -lm

The meaning of these flags are, shortly:

I CFLAGS — Flags for compilation. Here -g means to generate information for the debugger, -O3 for
optimisation, level 3.

I CPPFLAGS— Preprocessor flags. (The preprocessor handles things like #include and #ifdef.) Here -I.

specifies that the preprocessor should look for files at “.” which is the present directory.

I LOADLIBES — which libraries to load in the linking stage. Here -lm means to try to access the math library,
in libm.so. -labc would mean libabc.so.

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

The LabStoch directory tree

After executing

$ mkdir LabStoch

$ cd LabStoch

$ wget www.tp.umu.se/modsim/files/LabStoch.tgz

$ tar xzf LabStoch.tgz

you are left with a directory tree with directories

src/ lang/ brown/ mc/

the src directory contains the source.

src/sim.h src/common.c src/ran.h src/ran.c src/config.c src/sim.c

The other three (should) have their own define.h and Makefile.

lang/efile/ lang/conf/0064_r0.500_T1.000_start lang/Makefile lang/define.h

Files in directory conf store configurations; coordinates for one particle per line.

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

Makefile and define.h

The idea is to be able to use a single source to get different programs.
For Langevin dynamics—directory lang—the file define.h contains

#define D 2

#define VEL

#define CUT 3

and the Makefile refers to the source directory through VPATH = ../src:

CFLAGS = -g -O3

CPPFLAGS = -I.

LOADLIBES = -lm

VPATH = ../src

OBJS = sim.o ran.o common.o config.o

sim: ${OBJS}

${OBJS}: Makefile sim.h define.h ran.h

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

Introduction Program details How to store positions and velocities Compiling—header files and make Organizing things into directories Another look at the read args function

More from the read args function

A string in C is an array of characters terminated by a null character.

I strchr returns pointer to the desired character or NULL,

I strcmp compares the lexical order. Returns 0 if equal.

I Also strstr, strcat, strlen. . .

int read_args(Par *par, char *arg)

{

static double *atoms = NULL;

char *s;

// strchr may e.g. be called with arg="read=0064_start"

s = strchr(arg, ’=’);

if (s) // If ’=’ was found...

*s++ = ’\0’; // put end-of-string and let s point at the char after ’=’

if (!strcmp(arg, "read")) {

atoms = read_conf(par, atoms, s);

After the manipulations with the pointer s: arg="read" s="0064_start"

Peter Olsson Ume̊a University

Introduction to lab “Stochastic simulations”

	Introduction
	Program details
	How to store positions and velocities
	Compiling—header files and make
	Organizing things into directories
	Another look at the read_args function

