7.1.6 Circuit for van der Pol oscillator

Consider a circut with three parts (and current direction 1-2-3-1).
1-2 Inductor, L, governed by $V_{12}=L \dot{I}$.
2-3 Capacitor, C, with $V_{23}=Q / C$.
3-1 Resistor, with $V_{31}=f(I)$.
Suppose a source of current is attached to the circuit and then withdrawn. What equations govern the subsequent evolution of the current and the various voltages?
(a) Let $V=V_{32}$ denote the voltage drop from point 3 to point 2 in the circuit. Show that $\dot{V}=-I / C$ and $V=L \dot{I}+f(I)$.
We have

$$
\begin{equation*}
\dot{V}=-\dot{Q} / C=-I / C \tag{1}
\end{equation*}
$$

and, with $V \equiv V_{32}=-V_{23}=-V_{21}-V_{13}=V_{12}+V_{31}$:

$$
\begin{equation*}
V=L \dot{I}+f(I), \quad \Rightarrow \dot{I}=\frac{V}{L}-\frac{f(I)}{L} \tag{2}
\end{equation*}
$$

(b) Show that the equations in (a) are equivalent to

$$
\frac{d w}{d \tau}=-x, \quad \frac{d x}{d \tau}=w-\mu F(x)
$$

where $x=L^{1 / 2} I, w=C^{1 / 2} V, \tau=(L C)^{-1 / 2}$, and $F(x)=$ $f\left(L^{-1 / 2} x\right)$.
Plug in

$$
I=x / L^{1 / 2}, \quad V=w / C^{1 / 2}, \quad d t=(L C)^{1 / 2} d \tau
$$

into the equations above:

$$
\begin{aligned}
& (1) \Rightarrow \frac{d w / C^{1 / 2}}{d \tau(L C)^{1 / 2}}=-\frac{1}{C} \frac{x}{L^{1 / 2}} \Rightarrow \frac{d w}{d \tau}-x \\
& (2) \Rightarrow \frac{d x / L^{1 / 2}}{d \tau(L C)^{1 / 2}}=\frac{w / C^{1 / 2}}{L}-\frac{1}{L} f\left(x / L^{1 / 2}\right) \Rightarrow \frac{d x}{d \tau}=w-C^{1 / 2} F(x)
\end{aligned}
$$

This is claimed to be equivalent to the van der Pol equation if $F(x)=$ $x^{3} / 3-x$.

The van der Pol oscillator

This is from Example 7.5.1 in Strogatz.

Introduce $\mu=C^{1 / 2}$ and take $y=w / \mu$. We also demand $\mu \gg 1$. Then

$$
\begin{aligned}
\dot{x} & =\mu(y-F(x)), \\
\dot{y} & =-x / \mu .
\end{aligned}
$$

The time dependence becomes

(In Stogatz they determine the general behavior by analyzing the nullclines.)

