
6.5.1 Conserved quantity

Consider the equation
ẍ = x3 − x.

When rewritten as two first order equations it becomes
{

ẋ = v,

v̇ = x3 − x.

The Jacobian matrix becomes
(

0 1
3x2 − 1 0

)

.

a) Find all the equilibrium points and classify them.

Fixed points:

i) (x, v) = (0, 0):

A =

(

0 1
−1 0

)

, ⇒ τ = 0, ∆ = 1 ⇒ λ± = ±i.

Which makes us conclude that this fixed point is a center.

ii) (x, v) = (1, 0):

A =

(

0 1
2 0

)

, ⇒ τ = 0, ∆ = −2 ⇒ λ± = ±
√
2,

and we conclude that this is a saddle point.
We then determine the eigenvectors u±: From Au+ = λ+u+:

(

0 1
2 0

)(

a

b

)

=
√
2

(

a

b

)

⇒
(

b

2a

)

=

( √
2a√
2b

)

⇒ u+ =

(

1√
2

)

Similar algebra gives

u− =

(

1

−
√
2

)

.

Note that u+ is the repulsive direction whereas u− is the attractive
direction.
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iii) (x, v) = (−1, 0): The matrix is the same as for (1, 0) and the
behavior is therefore the same.

The behavior close to these fixed points are shown below:
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b) Find a conserved quantity.

To find a conserved quantity we note that v̇ = x3 − x implies that
vv̇ + ẋx− ẋx3 = 0, which can be rewritten as

d

dt

[

v2

2
+

x2

2
−

x4

4

]

= 0,

which shows that the conserved quantity is

v2

2
+

x2

2
−

x4

4
.

For small x, such that x4 may be neglected, this is the equation for a
circle in the (x, v) plane. And this makes sense since the fixed point at
the origin is a center.
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c) Sketch the phase portrait.

The figure below shows some trajectories obtained by integrating the
equations but they could of course equally well have been obtained
from Eq. (1) above. Each curve corresponds to a certain C-value.
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