5.2.2 Complex eigenvalues

This exercise leads you through the solution of a linear system where the eigenvalues are complex. The system is

$$
\left\{\begin{array}{l}
\dot{x}=x-y, \\
\dot{y}=x+y .
\end{array}\right.
$$

a) Find \mathbf{A} and show that it has eigenvalues $\lambda_{1}=1+i, \lambda_{2}=1-i$, with eigenvectors $\mathbf{v}_{1}=(1, i), \mathbf{v}+2=(-i, 1)$. (Note that the eigenvalues are complex conjugates, and so are the eigenvectors - this is always the case for real \mathbf{A} with complex eigenvalues.

Solution: This gives

$$
\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right), \quad \Rightarrow \quad \tau=2, \quad \Delta=2
$$

and the eigenvalues become

$$
\lambda_{1,2}=\frac{\tau+\sqrt{\tau^{2}-4 \Delta}}{2}=1 \pm i
$$

1. $\lambda_{1}=1+i: \mathbf{v}_{1}=(i, 1)$.
2. $\lambda_{2}=1-i: \mathbf{v}_{2}=(-i, 1)$.
b) The general solution is $\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$. so in one sense we're done! But this way of writing $\mathbf{x}(t)$ involves complex coefficients and looks unfamiliar. Express $\mathbf{x}(t)$ purely in terms of real-valued functions. (Hint: Use $e^{i \omega t}=\cos \omega t+i \sin \omega t$ to rewrite $\mathbf{x}(t)$ in terms of sines and cosines, and then separate the terms that have a prefactor of i from those that don't.)

Solution:

$$
\begin{aligned}
\mathbf{x}(t) & =c_{1} e^{(1+i) t}\binom{i}{1}+c_{2} e^{(1-i) t}\binom{-i}{1} \\
& =e^{t}\left[c_{1}(\cos t+i \sin t)\binom{i}{1}+c_{2}(\cos t-i \sin t)\binom{-i}{1}\right] \\
& =e^{t}\left[\left(c_{1}+c_{2}\right) \cos t\binom{0}{1}-\left(c_{1}+c_{2}\right) \sin t\binom{1}{0}\right] \\
& +i e^{t}\left[\left(c_{1}-c_{2}\right) \cos t\binom{1}{0}-\left(c_{1}-c_{2}\right) \sin t\binom{0}{1}\right]
\end{aligned}
$$

With $c_{1}, c_{2}=a \pm i b$ we can allow for arbitrary initial conditions.

