3.7.3 Fishery model

The equation

$$
\dot{N}=r N(1-N / K)-H,
$$

provides an extremely simple model of a fishery. In the absence of fishing, the populatin is assumed to grow logistically. The effects of fishing are modeled by the term $-H$, which sys that fish are caught or "arvested" at a constant rate $H>0$, independent of their population N.
a) Show that the system can be rewritten i dimensionless form as

$$
\frac{d x}{d \tau}=x(1-x)-h
$$

for suitably defined dimensionless quantities x, τ, and h.
Solution: Use $N=K x, d t=d \tau / r$, and $H=r K h$ to get

$$
r K \frac{d x}{d \tau}=r K x(1-x)-r K h .
$$

After dividing by $r K$ we obtain the desired expression

$$
\frac{d x}{d \tau}=x(1-x)-h
$$

b) Plot the vector field for different values of h.

Solution: The vector field for $h=0,0.15$, and 0.25 :

With $h=0$, no fishing we have the standard logistic map: Unstable fixed point at $x=0$. Stable fixed point at $x=1$.

With $h>0$ there is a value below which the fish would go to extinction.
c) Show that a bifurcation occurs at a certain value h_{c}, and classify this bifurcation.

Solution: There is a saddle-node bifurcation at $h=0.25$.
d) Discuss the long-term behavior of the fish population for $h<h_{c}$ and $h>h_{c}$, and give the biological interpretation in each case.

Solution: Always extinction for $h>h_{c}$. Lower stable fish population (compared to the case with $h=0$) for $h<h_{c}$ but also a possibility of extinction if the population (for some reason) temporarily goes down to values below the unstable fixed point.

