A bit confusing. I welcome feedback on this solution. / Peter

2.3.4 The Allee effect

a) Show that the effective growth rate is highest for intermediate N in the following model:

$$
\dot{N} / N=r-a(N-b)^{2} .
$$

This is an inverted parabola with maximum at $N=b$.
b) We have

$$
f(N)=N r-a N(N-b)^{2}=N r-a b^{2} N+2 a b N^{2}-a N^{3},
$$

which gives

$$
f^{\prime}(N)=r-a b^{2}+4 a b N-3 a N^{2} .
$$

Fixed points:

1. $N=0$, gives $f^{\prime}=r-a b^{2}$, which is stable if $a b^{2}>r$.
2. $r=a(N-b)^{2}$ which gives $N_{ \pm}^{*}=b \pm \sqrt{r / a}$.

The figures below are from taking $a=4, b=1 / 2$ and for two different r : Figures above: $r=0.5$ and below: $r=1.2$.

The figures to the left show the two different possible behaviors: above: $N_{-}^{*}>0$ and below $N_{-}^{*}<0$ (which is not a valid fixed point). In the
first case the trivial fixed point is stable (leading to extinction), in the second case it is unstable.
c) Consider the first case, for $r=0.5$. This leads to extinction for $N<$ $N_{-}^{*} \approx 0.15$. Otherwise the long time solution is N_{+}^{*}.

d) A difference of the $N(t)$ shown above compared to the solutions from the logistic equation is that we can here get extinction if N starts from a low value.

