
Implementing a Particle-Fluid Model of Auroral

Electrons

Jörgen Vedin and Kjell Rönnmark

Department of Physics, Ume̊a University, SE-901 87 Ume̊a, Sweden
{jorgen.vedin, kjell.ronnmark}@space.umu.se

Abstract. The particle-fluid model of auroral electrons that is pre-
sented in [1] is a major step forward within the field of dynamic models
of the auroral generation mechanisms. The model is, however, also an
example where the implementation of a physical model requires a lot of
knowledge from the field of computer science. Therefore, this paper con-
tains a detailed description of the implementation behind the particle-
fluid model. We present how the particles are implemented in doubly
linked lists, how the fluid equations are solved in a time-efficient algo-
rithm, and how these two parts are coupled into a single framework. We
also describe how the code is parallelized with an efficiency of nearly
100%.

1 Introduction

The aurora is created by electrons that are accelerated along the Earth’s mag-
netic field lines before they impinge on the ionosphere and create light through
excitation processes. To model the large-scale processes involved in the genera-
tion of auroras it is common to describe the electrons as a charged fluid, where
the fluid equations are solved self-consistently together with Maxwell’s equations.
However, as the electrons are accelerated they are also heated in a process that
is not properly described by a fluid model. Therefore, we have in [1] introduced
a particle-fluid model of the auroral electrons, where the field solver is comple-
mented by a particle pusher. By letting the electric field from the field solver
accelerate the particles, and then using the temperature of the particle distribu-
tion as a feed-back to the field solver, we obtain a self-consistent description of
the auroral electrons.

The physical description of the model is given in [1], and in this paper we
concentrate on the details of the implementation. We will describe how the set
of equations in the field solver are solved using an implicit algorithm in which
the discretized equations are rewritten on a block-tridiagonal form to achieve
good performance. We will also discuss how the particle data is implemented in
linked lists to obtain a time-efficient algorithm, and how the particles and the
field solver are coupled in a parallelized code. First, however, we will in the next
section describe the basics of the model.



2

2 Model

We use a two-dimensional model where the coordinates are z along the Earth’s
magnetic field and x spanning different latitudes, as can be seen in Fig. 1. The
dynamics of auroral electrons is in real life controlled by a generator mecha-
nism located in the tail of the Earth’s magnetosphere. To mimic this process we
prescribe a generator force in our model. The generator creates an ion current
perpendicular to the magnetic field lines. At the flanks of the generator region
the perpendicular current is diverted into field-aligned currents connecting the
generator to the ionosphere. At the ionosphere these field-aligned currents are
closed by a perpendicular ion current. Thus, we have a current circuit where
the upward field-aligned current is carried by downgoing electrons that create
auroras.

Aurora

Acceleration
region

Field
aligned
electric
fields

Field
aligned
current

Electric
field

Equatorial
current

Plasma
flow

Driving
force

x

y

z

Fig. 1. The geometry of the auroral current circuit and the generator region in the
equatorial magnetosphere. The curvature of the magnetic field lines is neglected in our
model equations, but the convergence of the magnetic field lines is retained.

2.1 Field Solver

The electron fluid is in our model described by the equations

∂tEx = −A2∂zBy − (1 − A2)F (1a)

∂tEz =
Bz

B0

(∂xBy + jz) (1b)

∂tBy = ∂xEz − ∂zEx (1c)

∂tn = −∂zjz (1d)

∂t jz = −
mi

m
nEz − ∂z

(

nTz +
j2z
n

)

− nT⊥

∂zBz

Bz

(1e)

which are the non-zero components of Maxwell’s equations together with the
equation of continuity and the momentum equation. Here we use simulation
variables, where Ex and Ez are the electric fields, By is the perpendicular magnetic



3

field, A is the Alfvén velocity, F is the generator force, n is the electron density,
jz is the field-aligned electron current, while Tz and T⊥ are the field-aligned and
perpendicular temperatures. Bz(z) is the geomagnetic field and B0 is the field
strength at z = 0 in the equatorial plane. The mass ratio in the last equation is
the ion mass mi divided by the electron mass m. For an extensive derivation of
these equations and a detailed description of the physics they describe, the reader
is referred to [1]. Notice that the ion dynamics is neglected in the present version
of the model. This introduces constraints on the generator, and we choose its
length and time scales to be larger than the ion gyroradius and the ion gyroperiod
respectively.

The equation system in (1) is underdetermined since the time evolution of
the temperatures Tz and T⊥ is not included. To close the equation system, we
therefore introduce a particle pusher from which we can obtain temperatures
that are consistent with the field solver in each time step.

2.2 Particle Pusher

The field solver that solves equations (1) is coupled to a particle pusher ac-
cording to the cartoon in Fig. 2. This cycle is performed for each time step in
the simulation. The particles are accelerated by the electric field from the field

Compute temperature
from velocity distribution

Accelerate and
move electrons

Update fields Field solver

Particle pusher

Temperature Electric field

Fig. 2. Cycle performed for each time step to couple the field solver and the particle
pusher.

solver, which implies that the particles move consistently with the fluid’s evo-
lution. From the velocity distribution of the electrons we can then determine
temperatures that can be used in the momentum equation (1e).

The particles move along z with velocity vz and gyrate the field line with
velocity v⊥. Their position and velocity are updated according to

dtz = vz , (2)

dtvz =
−e

m
Ep − µ∂zBz , (3)



4

where −e is the electron charge, µ = mv2
⊥

/2Bz is the conserved magnetic mo-
ment of the particle, and Ep is the electric field that accelerates the particle.
The electric field Ep is equal to the field-aligned electric field in the field solver,
but with a correction described in [1] to ensure that the density and current of
the particles are equal to the density and current of the fluid.

3 Implementation

3.1 Grid

The model is implemented on a two-dimensional grid of mesh size nx ×nz illus-
trated in Fig. 3, where the generator boundary is at z = 0 and the ionosphere is
on the opposite side of the simulation region. Since the z-coordinate is aligned
with the magnetic field and the magnetic field lines are converging as they ap-
proach the ionosphere, the grid point separation ∆x must decrease towards the
ionosphere. The size of the simulation region is Lz = 55,000 km in the z-direction
and Lx = 4,600 km in the x-direction at the generator boundary. The system
length in the x-direction at the ionospheric boundary is merely 200 km. The
grid is also chosen to be inhomogeneous for resolving the interesting features
of auroral acceleration that take place mainly at altitudes below 10,000 km
(z > 45,000 km) and at the field lines close to x = 0. The typical mesh size

−2000 −1500−1000 −500 0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

 x [km]

 z
 [k

m
]

Fig. 3. The inhomogeneous grid on which the model is implemented with the generator
boundary at z = 0 and the ionosphere on the opposite side of the simulation region.

in our simulations is nx × nz = 27 × 100. The value of nx is chosen to resolve
current filaments with a width of a few kilometers at the ionospheric boundary,
while the value of nz is large enough to get a good resolution of the acceleration
region which has a length of a few thousand kilometers along z at an altitude
centered about roughly 6,000 km.



5

3.2 Field Solver

The set of equations in (1) is solved by a time-centered implicit method, based
on factorization of the two-dimensional spatial differential operators. Algorithms
of this type are discussed by, for example, [3]. If we for notational convenience

collect all the fields in a vector U = (Ex, Ez, By, n, jz)
T
, we can after time dis-

cretization sum up (1) in the form

U(t + ∆t) = U(t) + ∆t {Q(U(t + ∆t/2)) + G} , (4)

where Q(U) represents the U dependence of the right hand side of (1) and
G represents the inhomogeneous term involving the generator force F. We now
linearize Q in U(t + ∆t) by a Taylor expansion:

Q(U(t + ∆t/2))

≈ Q(U(t)) +
1

2
[U(t + ∆t) − U(t)] · ∂UQ(U(t))

=
1

2
[U(t + ∆t) + U(t)] · ∂UQ(U(t)) , (5)

where the second step follows from the homogeneous properties of Q. This results
in a linear set of equations:

[

I −
∆t

2
∂UQ

]

· U(t + ∆t) =

[

I +
∆t

2
∂UQ

]

· U(t) + ∆t G . (6)

The operator ∂UQ, which contains both ∂x and ∂z , is now split into two parts
as ∂UQ = X + Z, where X contains only ∂x and Z contains only ∂z. This
decomposition is not unique, and it should be chosen in a way that makes the
product X ·Z as small and simple as possible. Neglecting the term ∆t2/4 X ·Z ·
[U(t + ∆t) − U(t)], which is of third order in ∆t, we can factorize the terms in
equation (6) as in an alternating direction implicit (ADI) method to find

[

I −
∆t

2
X

]

·

[

I−
∆t

2
Z

]

·U(t + ∆t) =

[

I +
∆t

2
X

]

·

[

I +
∆t

2
Z

]

·U(t) + ∆t G . (7)

Introducing U∗ = [I− ∆t/2 Z] · U(t + ∆t) as a new variable, we can solve (7)
in two steps. First we solve

[

I −
∆t

2
X

]

·U∗ = (8)

[

I +
∆t

2
X

]

·

[

I +
∆t

2
Z

]

· U(t) + ∆t G

for U∗. Then we use
[

I −
∆t

2
Z

]

· U(t + ∆t) = U∗ (9)



6

to solve for the fields at t + ∆t. When the operators X and Z are expressed as
centered finite differences, each of these two steps consists of solving a block-
tridiagonal set of equations. The number of operations needed for this scales
linearly with the mesh size (nx × nz) and hardly requires any extra memory,
which makes this algorithm very efficient. The number of operations needed for
a direct integration of (6) would typically be proportional to (nx × nz)

2.

3.3 Particle Pusher

In this model the particles are used roughly as in a regular Particle-In-Cell (PIC)
code, see for example [2]. The input to the particle pusher is the electric field
computed in the field solver, and the output from the particle pusher is the
temperatures Tz and T⊥. The electric field and the temperatures are given on
the grid points, but the particles can of course be located also in-between two
grid points. To handle this, a PIC code utilizes a weight scheme, and in this
model we use linear weights. The electric field (and also the magnetic field) used
in (3) is determined from the fields at the two grid points that are closest to
the particle’s position, as can be seen in Fig. 4. At the particle’s position zi, the

z

b

a

Zj+2Zj+1Zj
z

Zj−1
i

Fig. 4. To determine the electric field at the particle position zi we use triangular
shape functions. The electric field at grid point Zj is weighted by the value of the
shape function in point a and the electric at grid point Zj+1 is weighted by the value
of the shape function in point b. These two values are then assigned to the electric field
E(zi).

electric field is given by

E(zi) =

(

Zj+1 − zi

∆z

)

Ej +

(

zi − Zj

∆z

)

Ej+1 , (10)

where Ej and Ej+1 are the electric field values at the grid points Zj and Zj+1,
while ∆z is the grid point separation. When the temperatures are computed, the
weighting is inverted, and the temperatures at a grid point get a contribution
from all particles located in the two grid cells surrounding the grid point, as can
be seen in Fig. 5. If Ti is the contribution to the temperature from a particle
located at zi, then

Tj =

(

Zj+1 − zi

∆z

)

Ti (11)



7

z

a

b

Zj+2Zj+1
z

ZjZj−1
i

Fig. 5. A particle at position zi will contribute to the temperatures at grid points Zj

and Zj+1. If Ti is the contribution to the temperature from a particle located at zi,
then Ti will be weighted by the shape function’s value at a before it is added to the
temperature at Zj and it will be weighted by the shape function’s value at b before it
is added to the temperature at Zj+1.

is the part of Ti that is added to the temperature at grid point Zj . Correspond-
ingly the temperature at Zj+1 gets the contribution

Tj+1 =

(

zi − Zj

∆z

)

Ti (12)

from a particle at zi.

During the simulation, particles that move outside the system boundaries
are removed and new particles are injected at a rate determined to maintain a
constant density and temperature at the boundaries. To handle this adding and
removing of particles in a sufficiently fast manner the particles are implemented
as a linked list. Actually, we implement the particles as six linked lists. There are
two types of particles, particles of magnetospheric origin that are injected at the
generator boundary and particles of ionospheric origin that are injected at the
ionospheric boundary. Each type of particles are stored in three separate lists.
The particles that are active in the simulation are stored in an inside-list, while
the particles that have been removed from the system are stored in a used-list.
Furthermore, we have an unused-list that is used as a reservoir for particles that
are to be injected. In this way we need not free and allocate memory for each
particle that is removed or injected. Used particles are simply transferred from
the inside-list to the used-list and particles that are to be injected are transferred
from the unused-list to the inside-list. When the unused-list becomes empty, we
rehash the particles in the used-list to give them the desired velocity distribution
and place them in the unused-list. By letting the initial unused-list hold some
extra particles, we can through this procedure avoid the need for any memory
allocation during the simulation. As a fallback, the program can allocate more
particles if the initial unused-list turned out to be too small.

The implementation with several lists is fast, and the memory overhead is
not significant. However, we need to implement the lists as doubly linked lists
in order to enable particles to switch lists. This implies some overhead in the
memory per particle since each particle need a pointer to both the next particle
and the previous particle in the list. The total memory per particle is still only
40 bytes since each particle, apart from the two pointers, only holds three keys:
z, vz , and µ.



8

3.4 Particle-Fluid Coupling

The electrons are strongly magnetized which means that they are guided by
the magnetic field lines and therefore only move along z, although in a gyrating
motion. Hence, there are nx independent particle pushers in the total simulation.
In each particle pusher we need at least about 20 million particles to obtain
reasonably good statistics when computing the temperatures from the particle
distribution. For each x the particles use at least about 0.8 GB of memory, and
the entire simulation uses over 20 GB, which indicates that a parallelization is
needed. A huge number of particles, of course, leads to long computer times.
The ratio between the time spent in a single particle pusher and the time spent
in the field solver is roughly 1500 to 1.

Since almost all time is spent in the particle pushers and there are nx in-
dependent pushers, this application is perfectly suited for parallelization on nx

processors. The code, which is written in C, is therefore parallelized using the
Message Passing Interface (MPI) [4]. For each time step in the parallelized code,
every processor solves (8), then each processor solves (9) and calls the particle
pusher with its own value of x. Finally, before time is incremented, the fields in
the vector U, the temperatures and some help variables are synchronized on all
processors using MPI Allgather. This implies a message passing of about 0.2
MB for each time step.

The simulations are performed on the Sarek Linux Cluster at the High Perfor-
mance Computing Center North (HPC2N) [5]. This cluster has 384 64-bit AMD
Opteron 2.2 GHz CPUs in 192 dual nodes. The network, which is switched to
give similar performance between each pair of nodes, has a bandwidth of about
250 MB/s and a latency of a few microseconds. With this bandwidth, the mes-
sage passing will for each time step last only 10−3 s, while the entire time step
lasts for roughly 10 s. Thus, the time for communication is negligible. If the
load balancing between processors is good this would imply a parallelization ef-
ficiency of nearly 100%, and since each processor handles roughly equal amounts
of particles we have no reason to expect otherwise. The Sarek cluster also has
the advantage that each processor has access to 4 GB of RAM, which implies
that we can use the huge number of particles that is needed for good statistics
in the temperature calculations.

4 Discussion and Conclusions

According to the physical results presented in [1], the particle-fluid model pro-
duces results that are consistent with observations, and the model is a major step
forward compared to previous dynamic models of auroral electron acceleration,
for example [6], [7], and [8], where the variation in the electron temperatures
has been neglected. The implementation is, however, much more complicated
compared to implementing a pure fluid model.

The model proves to be very efficient to parallelize on the same number of
processors as the number of grid points in the direction perpendicular to the



9

magnetic field. A further parallelization of the code can be accomplished by
letting the particles at a certain field line be distributed in several linked lists
and update each list on different processors. If the lengths of these lists are
approximately equal, which is easily accomplished by always injecting particles
into the shortest list, the load balancing of this parallelization would be perfect.
Furthermore, the only communication needed in this parallelization is summing
the temperatures of all lists into a single temperature along the field line, which
makes this parallelization very efficient.

Acknowledgments

This research was conducted using the resources of High Performance Computing
Center North (HPC2N), and was supported by the Swedish National Graduate
School of Space Technology.

References

1. Vedin, J., Rönnmark, K.: Particle-fluid simulation of the auroral current circuit.
J. Geophys. Res. 111 (2006), A12201, doi:10.1029/2006JA011826

2. Birdsall, C. K., Langdon, A. B.: Plasma physics via computer simulation. McGraw-
Hill Book Company, New York (1985)

3. Degrez, G.: Implicit time-dependent methods for inviscid and viscous compressible
flows, in Computational Fluid Dynamics, edited by J. F. Wendt, pp. 180–222,
Springer-Verlag, New York (1992).

4. The Message Passing Interface (MPI)
http://www-unix.mcs.anl.gov/mpi/

5. High Performance Computing Center North, Ume̊a, Sweden
http://www.hpc2n.umu.se

6. Goertz, C. K., Boswell, R. W.: Magnetosphere-ionosphere coupling. J. Geophys.
Res. 84 (1979) 7239–7246

7. Streltsov, A. V., Lotko, W., Johnson, J. R., Cheng, C. Z.: Small-scale, disper-
sive field line resonances in the hot magnetospheric plasma. J. Geophys. Res. 103

(1998), 26559-26572
8. Rönnmark, K., Hamrin, M: Auroral electron acceleration by Alfvén waves and

electrostatic fields. J. Geophys. Res. 105 (2000) 25333–25344


