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Examination, Thermodynamics B, 6 hp, 2025–01–13 at 8:00–14:00.

Allowed aids: Calculator, Beta, Physics Handbook, English dictionary.

Hand in each problem on a separate page.
The calculations and the reasoning should be easy to follow. Good luck!

Note that the given solutions are sometimes too short to give full points at an exam.

1 Hair dryer

Calculate the power required for a hair dryer with an outgoing air flow of (4p)
Φ = 25ℓ/s to increase the temperature of the air by ∆T = 30◦C. You should
only make use of the equations in the formula sheet on the last pages of
the exam. For simplicity, take the temperature of the incoming air to be
Tin = 27 ◦C. Hint: first calculate the relation between V and Q.

Solution: Since the air is heated at constant pressure the proper
quantity to use is CP . The needed heat is

Q = CP∆T =

(

f

2
+ 1

)

NkB∆T.

At temperature Tout = Tin + ∆T = 330 K we can determine the
number of particles for the volume V and the required power for
the flow Φ = dV/dt becomes

dQ

dt
=

(

f

2
+ 1

)

P

Tout

dV

dt
∆T = 795 ≈ 800W.

2 The Sackur-Tetrode equation—consistency test

The entropy of a monatomic ideal gas is (4p)

S = NkB

[

ln

(

V

N

(

4πmU

3Nh2

)3/2
)

+
5

2

]

.

In an adiabatic process the entropy should be unchanged and a consistency
test for the above expression is that S is indeed unchanged during an adia-
batic process. Show that by starting from

PV γ = const,

that holds for adiabatic processes.
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Solution: The equation for the adiabatic process may be written

const = PV γ = PV V γ−1 = NkBTV
γ−1

⇒ const = V T 1/(γ−1) = V T f/2.

We also have U = (f/2)NkBT which means that U/N = const ×

T . When using that in the Sackur-Tetrode equation we find

S = NkB

[

ln

(

V

N
(CT )3/2

)

+
5

2

]

, C =
4πm

3h2
,

and since V T 3/2 =const this expression is a constant in an adia-
batic process.

3 Heat capacity formula

Use the thermodynamic identity to derive the heat capacity formula (2p)

CV = T

(

∂S

∂T

)

V

.

Then derive a similar formula for CP , by first writing dH in terms of dS and
dP .

Solution: Start from dH = TdS + V dP to get

CP =

(

∂H

∂T

)

P

= T

(

∂S

∂T

)

P

.
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4 Heat engine

Consider an engine cycle for an ideal diatomic gas with the following three
steps:

1 → 2 adiabatic compression from V1 to V2,

2 → 3 isothermal expansion to the original volume at temperature T2,

3 → 1 cooling from T2 to T1 at constant volume.

a) Make a reasonably correct sketch of this cycle in a P -V diagram that (1p)
includes the volumes V1 and V2. Also show at which stages heat is
entering and leaving the process by putting in arrows for Qh and Qc.

Solution: Heat enters at step 2 → 3. Heat leaves in the
cooling at step 3 → 1. The isotherm should be close to (well,
not altogether different from) a 1/V curve. Step 3 → 1 should
be a vertical line.

b) Calculate the amount of work and heat for each step of the cycle, (2p)

Solution: We have an adiabatic compression which should
leave PV γ = PV V γ−1 ∝ TV γ−1 constant. Therefore

T1V
γ−1
1 = T2V

γ−1
2 , ⇒ T1 = T2(V2/V1)

γ−1.

1 → 2 The adiabatic process gives

Q12 = 0.

Using ∆U = W +Q and Q = 0 we get

W12 = ∆U = U2 − U1 =
f

2
NkB(T2 − T1).

2 → 3

W23 = −

∫ V1

V2

P (V )dV −NkBT2 ln(V1/V2),

and Q23 = −W23 = NkBT2 ln(V1/V2).

3 → 1 Constant volume:
W31 = 0.

Q31 = ∆U =
f

2
NkB(T1 − T2) = −

f

2
NkBT2

(

1−
T1

T2

)

.
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c) Calculate the efficiency of the engine and express it in terms of X ≡ (2p)
(V1/V2)

γ−1, only.

Solution: We now have Qh = Q23, Qc = −Q31, and We =
Qh −Qc. The efficiency becomes

ǫ =
We

Qh

= 1−
Qc

Qh

= 1−
1

X

X − 1

lnX

5 Leaking refrigerator

Suppose that heat leaks into your kitchen refrigerator at an average rate of (3p)
300 W. Assuming ideal operations, how much electric power does it need?
Do the calculations by starting from the second law of thermodynamics.
Take the room temperature to be 20◦C, and 4◦C for the temperature in the
refrigerator.

Solution: Take Tc = 273+4 = 277 K and Th = 273+20 = 293 K.
During one second we have Qc = 300 J, Qh = Qc+W and entropy
flows

Sh =
Qh

Th
, Sc =

Qc

Tc
.

Ideal operations means that Sh = Sc and

Qh = Qc
Th

Tc

⇒ W = Qh −Qc =

(

Th

Tc

− 1

)

Qc = 17 J,

for one second. This implies that the power ≈ 17W.

6 Chemical potential of an ideal gas

By starting from some formulas on the attached formula sheet show the (3p)
following expression for the pressure dependence of the chemical potential
for an ideal gas:

µ(T, P ) = µ(T, P ◦) + kBT ln(P/P ◦).

(The pressure P ◦ can be any reference pressure, but it is usually taken to be
equal to the atmospheric pressure.)
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Solution: We note that we have

µ(T, P ) = µ(T, P ◦) +

∫ P

P ◦

∂µ

∂P ′
dP ′

The starting point is µ = G/N and dG = −SdT + V dP + µdN ,
which gives

V =

(

∂G

∂P

)

TN

⇒
∂µ

∂P
=

V

N
=

kBT

P
,

and plugging this into the integral above gives the desired equation.
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7 Derivation of the Clausius Clapeyron relation

The Clausius Clapeyron relation applies to the phase boundary e.g. between
gas and liquid,

dP

dT
=

L

T∆V
.

Along the phase boundary the Gibbs free energy for the different phases (gas (3p)
and liquid) is equal, Gg = Gℓ. Use this fact together with the thermodynamic
identity for Gibbs free energy,

dG = −SdT + V dP,

to derive the Clausius Clapeyron relation.

Solution: We have

dGℓ = −SℓdT + VℓdP, dGg = −SgdT + VgdP.

Along the phase boundary we have dGg = dGℓ and we may there-
fore write

−SℓdT + VℓdP = −SgdT + VgdP.

After rearranging we get

(Sg − Sℓ)dT = (Vg − Vℓ)dP ⇒
dP

dT
=

∆S

∆V
=

L

T∆V
,

since the latent heat is L = T∆S.

Number of points = 24
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Formula sheet for Thermodynamics

Physical constants

kB 1.381× 10−23 J/K,
NA 6.022× 1023,
R 8.315 J/mol·K,
e 1.602× 10−19 C.

1 General

• The ideal gas law: PV = NkBT , PV = nRT .

• Equipartition: Uthermal =
f
2
NkBT .

• First law of thermodynamics: dU = W +Q.

• Work: W = −
∫ Vf

Vi
P (V )dV , (quasistatic).

• Adiabatic process: PV γ = const, γ = f+2
f
.

• Heat capacity:

C =
Q

∆T
, CV =

(

∂U

∂T

)

V

, CP =

(

∂H

∂T

)

P

.

• Latent heat: L = Q/m.

• Thermal conductivity: Q
∆t

= −κtA
dT
dx
.

2 The second law

• Multiplicity of a two-state paramagnet: Ω(N,N↑) =
(

N
N↑

)

= N !
N↑!N↓!

.

• Stirling’s approximation: lnN ! ≈ N lnN −N .

• Entropy from multiplicity: S = kB ln Ω.

• The Sackeur-Tetrode formula:

S = NkB

[

ln

(

V

N

(

4πmU

3Nh2

)3/2
)

+
5

2

]
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3 Interactions and implications

• Definition of temperature: T =
(

∂S
∂U

)−1
.

• The thermodynamic identity: dU = TdS − PdV + µdN .

• Entropy and heat: S = Q/T .

4 Engines and refrigerators

• Heat engine: Qh = Qc +We.
In the context of heat engines we let We be positive when energy is
leaving the system. This is thus an exception from the ordinary sign
convention.

• Efficiency: η = benefit/cost = We/Qh.

• Carnot efficiency: η = 1− Tc/Th.

5 Free energy and chemical thermodynamics

• Enthalpy: H = U + PV and dH = TdS + V dP + µdN .

• Helmholtz free energy: F = U − TS and dF = −SdT − PdV + µdN .

• Gibbs free energy: G = U +PV − TS and dG = −SdT + V dP + µdN .

• Chemical potential: µ = G/N .

• ∆G ≤ Wother (at constant T and P ).

• The Clausius-Clapeyron relation

dP

dT
=

L

T∆V
.
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Topics in Thermodynamics, 1.5hp

8 Chemical equilibrium

(a) Explain what relation between the chemical potentials µH2
, µN2

, and (2p)
µNH3

which is implied by an equilibrium in the reaction

N2 + 3H2 ↔ 2NH3.

(b) Make use of the relation between the chemical potentials from part (a) (2p)
and

µ(T, P ) = µ◦(T ) + kBT ln(P/P ◦)

to derive
P 2
NH3

(P ◦)2

PN2
P 3
H2

= e−∆G◦/RT .

In the above equations µ◦ represents the chemical potential of a species
in its “standard state”, i.e. when its partial pressure is P ◦. Each PX

is the partial pressure of species X . ∆G◦ is the “standard” Gibbs free
energy of the reaction for one mole of N2.

Solution: The solution should follow rather directly from the text

book.

9 Liquefaction of air

The figures on the next page show the Gibbs free energy versus composition
at a few different temperatures, T1 through T6. In these figures x is the
fraction of oxygen; x = 1 is thus pure oxygen whereas x = 0 is pure nitrogen,
Pure oxygen liquefies at 90.2 K and pure nitrogen liquefies at 77.4 K.

(a) Which of the figures is for 90.2 K (the boiling point of liquid oxygen) (1p)
and which is for 77.4 K (the boiling point of nitrogen)?

Solution: Fig for T5 is for 90.2 K and figure for T1 is for 77.4
K. At these temperatures the free energies for liquid and gas
are the same for pure oxygen and pure nitrogen, respectively.

(b) From the answer to the first part: explain how these temperatures are (1p)
ordered, i.e. do we have T1 > T2 > . . . > T6 or is it the other way
around? Also tell which of solid and dashed lines that corresponds to
gas and which corresponds to liquid.
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Solution: T1 is the lowest temperature which follows from part
(a). Dashed line corresponds to liquid, which is clear from the
figure at the lowest temperature where the liquid should have
the lowest free energy.

(c) Which of the figures is for the temperature where air, with 21% oxygen, (2p)
first starts to liquefy? Draw a straight line in the figure that shows the
lowest possible free energy. Also try to read off the composition of the
liquid that is then produced, from the figure.
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x

G

Solution: It is the figure with temperature T3. Zooming in and
making a dashed vertical line for 21% oxygen one sees that the free
energy along the blue line between x ≈ 0.18 and x ≈ 0.48 gives a
lower free energy than from the solid line for gas only. The liquid
that forms will have about 50% oxygen. (I do of course not expect
you to “zoom in”, but this is only to try to explain better.)
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