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New and old problems

1 Indoor air humidity

Since the cold outdoor air contains a very small amount of water the
indoor air becomes very dry during winter. Assume an outdoor tem-
perature of 0◦C and 100% relative humidity and indoor temperature of
20◦C.

a) Calculate the relative humidity of the indoor air. Assume that
the outdoor air is quickly circulating to the inside, as is common
of modern buildings.

b) Sara wants to rise the humidity in her appartment of 23 m2 and
2.4 m from floor to ceiling by 50 percentage (which could e.g. be
from 5% to 55%) by boiling water. How much water needs to be
boiled away? How much energy is needed in this process?

Solution:

a) Partial pressures: 0.00611 and 0.023, respectively. The
relative humidity becomes 26.6%.

b) We have 0.50 × PH2OV = nRT gives n = 0.5 × 0.023 ×
105 × 23 × 2.4/8.31/293 = 26 moles which is 26 × 18g
= 0.468 kg. This means an energy of Lm = 2260×103×
0.468 = 1.057MJ.

Answer:

a) The relative humidity becomes 26.6%.

b) To increase the relative humidity by 50% we need to boil away
0.468 kg which requires 1.06 MJ of energy.

2 Opening refrigerator door

You open a kitchen refrigerator and close it again. In this process the
volume fraction ǫ = 0.1 of the cold air in the refrigerator is replaed
by warm air of the room. After a short pause you try to open the
refrigerator again and find that you then need to apply a large force.
Calculate this force!

Take the room temperature to be T1 = 20◦C, the temperature in the
refrigerator to be T2 = 0◦C and the refrigerator door to have an area
of A = 1m2.
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Solution: Introduce refrigerator temperature, T2 = 278 K,
room temperature T1 = 293 K. Before opening the door we
have

PV = NkBT2.

After opening and closing the door the volume fraction ǫ
is replaced with warm air. The number of warm and cool
molecules is now

P (1− ǫ)V = N2kBT2,

P ǫV = N1kBT1.

We now use the new number of molecules, N1 +N2:

PnewV = (N1 +N2)kBT2 =
PǫV

kBT1

kBT2 + P (1− ǫ)V,

which becomes

Pnew =
[

ǫ
T2

T1

+ (1− ǫ)
]

P.

Use pressure difference

P − Pnew = ǫ
(

1− T2

T1

)

P

to determine the force

F = A(P − Pnew) = 1× 0.1
(

1− 278

293

)

× 105 = 512N.

Answer:

PatmAǫ
(

1− T2

T1

)

3 Chemical potential

The heat capacity of a degenerate electron gas at constant volume may
be written as

Cv = aN
(

V

N

)2/3

T,

where a is a factor involving only universal constants of physics. Deter-
mine how the chemical potential of the gas depends on temperature.

Answer:

µ(T ) = −a

6

(

V

N

)2/3

T 2.
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Basics We can determine S and U from

Cv = T

(

∂S

∂T

)

V

⇒ S =
∫

CV

T
dT = aN1/3V 2/3T,

and

CV =

(

∂U

∂T

)

V

⇒ U =
∫

CV dT = aN1/3V 2/3T
2

2
.

Incorrect approach One can then try

µ = −T

(

∂S

∂N

)

U,V

= −a

3

(

V

N

)2/3

T 2,

or

µ =

(

∂U

∂N

)

S,V

=
a

6

(

V

N

)2/3

T 2,

but they give different answers which both are wrong.

Hint The reason that this is incorrect is that we have not kept U
constant in the first case and S constant in the second. To keep U
constant when we differentiate S the temperature has to change as N
changes. Formally differentiating the expression for U gives

dU = a
1

3
N−2/3V 2/3T

2

2
dN + aN1/3V 2/3TdT,

and taking dU = 0 leads to

1

3
N−2/3T

2

2
dN = −N1/3dT ⇒ dN = −6

N

T
dT,

whereas a similar approch with dS = 0 leads to dN = −3N
T
dT . With

this approach there will be two terms in (∂S/∂N) and (∂U/∂N) and
both paths will lead to the correct answer.

We then use

dU =

(

∂U

∂N

)

V T

dN +

(

∂U

∂T

)

V N

dT,
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which gives
(

∂U

∂N

)

SV

=

(

∂U

∂N

)

V T

+

(

∂U

∂T

)

V N

(

∂T

∂N

)

SV

= a
1

3
N−2/3V 2/3T

2

2
− aN1/3V 2/3T

T

3N

=
(

a

6
− a

3

)(

V

N

)2/3

T 2

= −a

6

(

V

N

)2/3

T 2

4 Heat engine

Consider a heat engine with a cycle consisting of three steps:

1. adabatic compression from V1 to V2,

2. isothermal expansion back to volume V1,

3. pressure relaxation to the initial state at constant volume.

Find the efficiency of such an engine. Assume that the working sub-
stance is a two-atomic gas with “frozen out” oscillation degrees of free-
dom.

Solution:

1. Adiabatic process: no heat. With PV γ =const which
gives TV γ−1 =const we have T1V

γ−1

1 = T2V
γ−1

2 .

2. Isothermal: ∆U = 0, Q2 = ∆U −W , W = − ∫ PdV =
−NkBT2

∫ V1

V2

dV
V

= −NkBT2 ln(V1/V2), gives Qh = Q2 =
NkBT2 ln(V1/V2)

3. Isochoric: W = 0, Q = ∆U = f
2
NkB(T1 − T2), Qc =

−Q = f
2
NkB(T2 − T1).

Taken together:

η = 1−Qc

Qh

= 1− f

2

NkB(T2 − T1)

NkBT2 ln(V1/V2)
= 1− f

2

1− (V2/V1)
γ−1

ln(V1/V2)
.

Answer:

η = 1− f

2

1− (V2/V1)
γ−1

ln(V1/V2)
.
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5 Phase transition in 3He

Consider the phase transition between solid and liquid 3He at low tem-
peratures. At absolute zero the transition happens at a pressure P0,
the solid phase corresponds to P > P0, the liquid phase is at P < P0.
The entropy per mole of the liquid phase is given by Sl = αT whereas
the entropy of the solid phase may be taken to be a constant Ss = S0.
The volume per mole of both the liquid and the solid phases may be
taken to be a constant with ∆V = Vl − Vs = V0 > 0.

Determine the phase boundary curve and the critical pressure, Pc, be-
low which solid 3He cannot exist. Hint: Consider Fig. 5.13 in the
textbook.

Solution: Use ∆S = αT − S0 in

dP

dT
=

∆S

∆V
=

αT − S0

V0

,

which gives

P (T ) = P0 +
∫ T

0

dP

dT
dT ′ = P0 +

1

V0

(

α
T 2

2
− S0T

)

.

Plug in the highest temperature with a non-zero ∆S, i.e.
T = S0/α:

Pc = P0 +
1

V0

(

α
S2

0

2α2
− S2

0

α

)

= P0 −
S2

0

2V0α
.

Answer:

Pc = P0 −
S2

0

2V0α
.

6 Moving mass Note that this is an unusually difficult problem.

Consider a thermally isolated chamber of total volume 2V filled with
a one-atomic gas with initial temperature Ti. The volume is separated
into two parts by a movable plate of surface area A and an unknown
mass M as shown in the figure. The plate allows themrla interactino
between the upper and the lower parts of the chamber. We have the
same amount of particles N in each part. Initially the plate is fixed
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and the volumes of both parts are the same and equal to V . We then
let the plate move under the action of gravity. After a transitiional
period the system reaches mechanical and thermal equilibrium with a
new temperature of the gas and new volumes, V1 = V/2 for the lower
part and V2 = 3V/2 for the upper part. Find the mass M of the plate.
Neglect the potential energy of the gas. Hint: Think about energy

conservation in the system.

Answer:

Mg =
12

7

NkBTiA

V

7 Entropy change

Consider a chamber of total volume 2V separated into two parts of
volume V1 = V/2 and V2 = 3V/2. The parts are filled with one-atomic
gases A and B, respectively, which are initially in mechanical, but not
thermal equilibrium with each other. There is an equal amount of
atoms for each gas, NA = NB = N . We then remove the plate and
thus allow thermal and diffusive interaction between gases. Find the
increase in entropy of the system.

Answer:

∆S = nkB ln
(

128

27

√
3
)

8 Chemical potential of a crystal

According to the Debye model, the heat capacity of a crystal at low
temperatures may be written as

Cv = aNkB

(

T

TD

)3

,

where a is a numerical factor and TD is a constant known as the Debye
temperature. Find how the chemical potential of the crystal depends
on the temperature.

Answer:

µ = −akBT
4

12T 3
D

9 Engine

Consider an engine cycle with three steps,
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1. adabatic compression from V1 to V2,

2. isobaric expansion back to volume V1,

3. pressure relaxation to the initial state at constant volume.

Find the efficiency of such an engine. Assume that the working sub-
stance is a two-atomic gas with “frozen out” oscillation degrees of free-
dom.

Solution: (Corrected 2020-01-11, 13:40)

1. Adiabatic process: no heat. PV γ =const gives P1V
γ
1 =

P2V
γ
2 .

2. Isobaric expansion back to V1 and temperature T3: W =
−P2(V1 − V2), ∆U = f

2
NkB(T3 − T2) = f

2
P2(V1 − V2)

Qh = Q2 = ∆U −W = (f
2
+ 1)P2(V1 − V2).

3. Isochoric: W = 0, Q = ∆U = f
2
(P1−P2)V1. Qc = −Q =

f
2
(P2 − P1)V1.

Taken together:

η = 1−Qc

Qh
= 1− f/2

f/2 + 1

V1(P2 − P1)

P2(V1 − V2)
= 1− f/2

f/2 + 1

1− P1/P2

1− V2/V1

η = 1− f/2

f/2 + 1

1− (V2/V1)
γ

1− V2/V1

η = 1− f/2

f/2 + 1

1− (V2/V1)
γ

1− V2/V1

.

10 Modified van der Waal’s model

Imagine the modified van der Waal’s model

(

P + a
N3

V 3

)

(V − bN) = NkBT,

where a and b are some constants. Consider an expansion of such a gas
from V = 5bN to V = 9bN at constant N and T and determine the
change in Gibbs free energy of the gas.
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Answer: My result

∆G = −NkB ln 2− NkBT

8
+

28aN

27 · 25b2 .

Vitaly Bychkov:

∆G = −NkB ln 2− NkBT

8Nb
+

9aN

128b2
.

11 Leaking container

A container of volume V is filled with a gas of temperature T , initial
total number of particles N0, and mass m for each particle. We make
an extremely small hole of area A in the container and the gas starts
leaking out slowly due to random collisions of gas particles with the
wall (or rather, the hole). How does the number of gas particles N
decrease with time?
Hint: Find how many particles dN that pass through the hole in a time
interval dt and solve the equation for dN/dt. Take the average thermal

velocity in one direction to be 〈vx〉 ≈ 〈v2x〉
1/2

.

Answer:

N = N0e
−t/τ , τ = 2

V

A

√

m

kBT
.

Solution: The number of particles that leave the container
is the same as the number of particles in the volume A ×
〈vx〉 dt/2. The division by 2 is because only half of the par-
ticles will move towards the hole. The number of particles is
then

dN = −N

V
A 〈vx〉 dt/2 ⇒ dN

dt
= −N

A

V

〈vx〉
2

= −N/τ.

The solution to this is

N = N0e
−t/τ ,

and since m 〈v2x〉 = kBT , we have

τ =
2V

A

√

m

kBT
.
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12 Heat capacity

Imagine a certain material with heat capacity given by Cv = aT 3, where
a is some constant. Find how the entropy of this material depends on
the energy, U .

Answer:

S =
1

3
a1/4(4U)3/4.
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