Formula sheet for Thermodynamics

Physical constants

 k_B 1.381 × 10⁻²³ J/K, N_A 6.022 × 10²³, R 8.315 J/mol·K, e 1.602 × 10⁻¹⁹ C.

1 General

• The ideal gas law: $PV = Nk_BT$, PV = nRT.

• Equipartition: $U_{\text{thermal}} = \frac{f}{2}Nk_BT$.

• First law of thermodynamics: dU = W + Q.

• Work: $W = -\int_{V_i}^{V_f} P(V)dV$, (quasistatic).

• Adiabatic process: $PV^{\gamma} = \text{const}, \ \gamma = \frac{f+2}{f}$.

• Heat capacity:

$$C = \frac{Q}{\Delta T}, \quad C_V = \left(\frac{\partial U}{\partial T}\right)_V, \quad C_P = \left(\frac{\partial H}{\partial T}\right)_P.$$

• Latent heat: L = Q/m.

• Thermal conductivity: $\frac{Q}{\Delta t} = -\kappa_t A \frac{dT}{dx}$.

2 The second law

• Multiplicity of a two-state paramagnet: $\Omega(N, N_{\uparrow}) = \binom{N}{N_{\uparrow}} = \frac{N!}{N_{\uparrow}!N_{\downarrow}!}$

• Stirling's approximation: $\ln N! \approx N \ln N - N$.

• Entropy from multiplicity: $S = k_B \ln \Omega$.

• The Sackeur-Tetrode formula:

$$S = Nk_B \left[\ln \left(\frac{V}{N} \left(\frac{4\pi mU}{3Nh^2} \right)^{3/2} \right) + \frac{5}{2} \right]$$

3 Interactions and implications

- Definition of temperature: $T = \left(\frac{\partial S}{\partial U}\right)^{-1}$.
- The thermodynamic identity: $dU = TdS PdV + \mu dN$.
- Entropy and heat: S = Q/T.

4 Engines and refrigerators

- Heat engine: $Q_h = Q_c + W_e$. In the context of heat engines we let W_e be positive when energy is leaving the system. This is thus an exception from the ordinary sign convention.
- Efficiency: $\eta = \text{benefit/cost} = W_e/Q_h$.
- Carnot efficiency: $\eta = 1 T_c/T_h$.

5 Free energy and chemical thermodynamics

- Enthalpy: H = U + PV and $dH = TdS + VdP + \mu dN$.
- Helmholtz free energy: F = U TS and $dF = -SdT PdV + \mu dN$.
- Gibbs free energy: G = U + PV TS and $dG = -SdT + VdP + \mu dN$.
- Chemical potential: $\mu = G/N$.
- $\Delta G \leq W_{\text{other}}$ (at constant T and P).
- The Clausius-Clapeyron relation

$$\frac{dP}{dT} = \frac{L}{T\Delta V}.$$