
Selected problems from Schroeder, An intro-

duction to Thermal physics

Problem 1.16. The exponential atmosphere.

(a) Consider a horizontal slab of air whose thickness (height) is dz. If this
slab is at rest the pressure holding it up from below must balance both
the pressure from above and the weight of the slab. Use this fact to
find an expression for dP/dz, the variation of pressure with altitude,
in terms of the density of air.

(b) Use the ideal gas law to write the density of air in terms of pressure,
temperature, and the average mass m of the air molecules. (The infor-
mation needed to calculatge m is given in Problem 1.14.) Show, then,
that the pressure obeys the differential equation

dP

dz
= −

mg

kBT
P,

called the barometric equation.

(c) Assuming that the temperature of the atmosphere is independent of
height (not a great assumption, but not terrible either), solve the baro-
metric equation to obtain the pressure as a function of height:

P (z) = P (0) exp
(

−
mgz

kBT

)

.

Show also that the density obeys a similar equation.

Problem 1.21. During a hailstorm, hailstones with an average mass of 2 g
and a speed of 15 m/s strike a window pane at a 45◦ angle. The area of the
window is 0.5 m2 and the hailstones hit it at a rate of 30 per second. What
average pressure do they exert on the window? How does this compare to
the pressure of the atmosphere?
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Problem 1.31a–d. Imagine some helium in a cylinder with an initial volume
of 1 liter and an initial pressure of 1 atm. Somehow the helium is made to
expand to a final volume of 3 liters, in such a way that its pressure rises in
direct proportion to its volume. (Yes, this is odd!)

(a) Sketch a graph of pressure vs. volume for this process.

(b) Calculate the work done on the gas during this process, assuming that
there are no “other” types of work being done.

(c) Calculate the change in the helium’s energy content during this process.

(d) Calculate the amount of heat added to or removed from the helium
during this process.

Problem 1.34. An ideal diatomic gas, in a cylinder with a movable pis-
ton undergoes the rectangular cyclic process shown below. Assume that
the temperature is always such that rotational degrees of freedom are ac-
tive, but vibrational modes are “frozen out”. Also assume that the only
type of work done on the gas is quasistatic compression-expansion work.

V1 V2

P1

P2

A

B

C

D

V

P

(a) For each of the four steps A through D, compute the work done on the
gas, the heat added to the gas, and the change in the energy content
of the gas. Express all answers in terms of P1, P2, V1, and V2. (Hint:
Compute ∆U before Q, using the ideal gas law and the equipartition
theorem.)

(b) Describe in words what is physically being done during each of the four
steps; for example, during step A, heat is added to the gas (from an
external flame of something) while the piston is held fixed.
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(c) Compute the net work done on the gas, the net heat added to the gas,
and the net change in the energy of the gas during the entire cycle. Are
the results as you expected? Explain briefly.

Problem 1.37. In a Diesel engine, atomspheric air is quickly compressed to
about 1/20 of its original volume. Estimate the temperature of the air after
compression, and explain why a Diesel engine does not require spark plugs.

Problem 1.49. Consider the combustion of one mole of H2 with 1/2 mole
of O2 under standard conditions, as discussed on p. 35 in the textbook. How
much of the heat energy produced comes from a decrease in the internal
energy of the system, and how much comes from work done by the collapsing
atmosphere? (Treat the volume of the liquid water as negligable.)

Problem 2.17 Use the methods of p. 63–64 to derive a formula, similar to
Eq. 2.21, for the multiplicity of an Einstein solid in the “low-temperature”
limit, q ≪ N .

Problem 2.24 For a single large two-state paramagnet, the multiplicity
function is very sharply peaked about N↑ = N/2.

(a) Use Stirling’s approximation to estimate the height of the peak in the
multiplicity function.

(b) Use the methods of this section to derive a formula for the multiplicity
function in the vicinity of the peak, in terms of x ≡ N↑ −N/2. Check
that your formula agrees with your answer to part (a) when x = 0.

(c) How wide is the peak in the multiplicity function?

Problem 2.25 The mathematics of the previous problem can also be applied
to a one-dimensional random walk: a journey consisting of N steps, all the
same size, each chosen randomly to be either forward or backward. (The
usual mental image is that of a drunk stumbling along an alley.)

(a) Where are you most likely to find yourself, after the end of a long
random walk?
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(b) Suppose you take a random walk of 10,000 steps (say each half a meter
long). About how far from your starting point would you expect to be
at the end?

Problem 2.26 Consider an ideal monatomic gas that lives in a two-dimensional
universe (“flatland”), occupying an area A instead of a volume V . By fol-
lowing the same logic as above, find a formula for the multiplicity of the gas,
analogous to Eq. 2.40.

Problem 2.32 Find an expression for the entropy of the two-dimensional
ideal gas considered in Problem 2.26. Express your result in terms of U , A,
and N .

Problem 2.34 Show that during the quasistatic isothermal expansion of a
monatomic ideal gas, the change in entropy is related to the heat input Q by
the simple formula

∆S =
Q

T
.

Problem 2.35 According to the Sackur-Tetrode equation, the entropy of a
monatomic ideal gas can become negative when its temperature (and hence
its energy) is sufficiently low. Of course this is absurd, so the Sackur-Tetrode
equation must be invalid at very low temperatures. Suppose you start with a
sample of helium at room temperature and atmospheric pressure, then lower
the temperature holding the density fixed. Pretend that the helium remains a
gas and does not liquefy. Below what temperature would the Sackur-Tetrode
equation predict that S is negative?

Problem 2.37 Using the same method as in the text, calculate the entropy
of mixing for a system of two monatomic ideal gases, A and B, whose relative
proportion is arbitrary. Let N be the total number of molecules and let x be
the fraction of these that are of species B. You should find

∆Smixing = −NkB[x ln x+ (1− x) ln(1− x)].

Problem 3.5 Starting with the result of Problem 2.17, find a formula for
the temperature of an Einstein solid in the limit q ≪ N . Solve for the energy
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as a function of temperature to obtain U = Nǫe−ǫ/kBT , where ǫ is the size of
an energy unit.

Problem 3.6 In a system with only quadratic degrees of freedom in the high-
temperature limit, i.e. where the number of energy units is much larger than
the number of degrees of freedom, the multiplicity is proportional to UNf/2,
where Nf is the total number of degrees of freedom. Find an expression for
the energy of such a system in terms of its temperature and comment on the
result. How can you tell that this formula for Ω cannot be valid when the
total energy is very small?

Problem 3.8 Starting with the result of Problem 3.5, calculate the heat ca-
pacity of an Einstein solid in the low-temperature limit. Sketch the predicted
heat capacity as a function of temperature. (Note: Measurements of heat
capacities of actual solids at low temperatures do not confirm the prediction
that you will make in this problem.)

Problem 3.10 An ice cube (mass 30g) at 0◦C is left sitting on the kitchen
table, where it gradually melts. The temperature in the kitchen is 25◦C.

(a) Calculate the change in the entropy of the ice cube as it melts into
water at 0◦C. (Don’t worry about the fact that the volume changes
somewhat.)

(b) Calculate the change in the entropy of the water (from the melted ice)
as its temperature rises from 0◦C to 25◦C.

(c) Calculate the change in the entropy of the kitchen as it gives up heat
to the melting ice/water

(d) Calculate the net change in the entropy of the universe during this
process. Is the net change positive, negative, or zero? Is this what you
would expect?

Problem 3.25a–d In Problem 2.18 it is found that the multiplicity of an
Einstein solid with N oscillators and q energy units is approximately

Ω(N, q) ≈

(

q +N

q

)q (
q +N

N

)N

.
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(a) Starting with this formula, find an expression for the entropy of an
Einstein solid as a function ofN and q. Explain why the factors omitted
from the formula have no effect on the entropy when N and q are large.

(b) Use the result of part (a) to calculate the temperature of an Einstein
solid as a function of its energy. (The energy is U = qǫ, where ǫ is a
constant.) Be sure to simplify your result as much as possible.

(c) Invert the relation you found in part (b) to find the energy as a func-
tion of temperature, then differentiate to find a formula for the heat
capacity.

(d) Show that in the limit T → ∞, the heat capacity is C = NkB. (Hint:
when x is very small ex ≈ 1 + x.) Is this the result you would expect?
Explain.

Problem 3.31 Experimental measurements of heat capacities are often rep-
resented in reference works as empirical formulas. For graphite, a formula
that works well over a fairly wide range of temperatures is (for one mole)

CP = a+ bT − c/T 2,

where a = 16.86 J/K, b = 4.77× 10−3 J/K2, and c = 8.54× 105 JK. Suppose
then that a mole of graphite is heated at constant pressure from 298 K to
500 K. Calculate the increase in its entropy during this process. Add on the
tabulated value of S(298 K) from the table of the book1 to obtain S(500 K).

Problem 3.36 Consider an Einstein solid for which both N and q are much
greater than 1. Think of each oscillator as a separate “particle”.

(a) Show that the chemical potential is

µ = −kBT ln
(

N + q

N

)

.

(b) discuss this result in the limits N ≫ q and N ≪ q, concentrating on
the question of how much S increases when another particle carrying
no energy is added to the system. Does the formula make intuitive
sense?

1The table may also be found at the end of this document.
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Problem 4.1 Recall Problem 1.34, which concerned an ideal diatomic gas
taken around a rectangular cycle on a PV diagram. Suppose now that this
system is used as a heat engine, to convert the heat added into mechanical
work.

(a) Evaluate the efficiency of this engine for the case V2 = 3V1, P2 = 2P1.

(b) Calculate the efficiency of an “ideal” engine operating between the same
temperature extremes.

Problem 4.5 Prove directly—by calculating the heat taken in and the heat
expelled—that a Carnot engine using an ideal gas as the working substance
has an efficiency of 1− Tc/Th.

Problem 4.14 a–c A heat pump is an electrical device that heats a build-
ing by pumping heat in from the cold outside. In other words, it’s the same
as a refrigerator, but its purpose is to warm the hot reservoir rather than to
cool the cold reservoir (even though it does both). Let us define the following
standard symbols, all taken to be positive by convention:

Th = temperature inside building,
Tc = temperature outside,
Qh = heat pumped into building in 1 day,
Qc = heat taken from outdoors in 1 day,
W = electrical energy used by heat pump in 1 day.

(a) Explain why the “coefficient of performance” (COP) for a heat pump
should be defined as Qh/W .

(b) What relation among Qh, Qc, and W is implied by energy conservation
along? Will energy conservation permit the COP to be greater than 1?

(c) Use the second law of thermodynamics to derive an upper limit on the
COP, in terms of the temperatures Th and Tc alone.

Problem 4.18 Derive the following equation for the efficiency of the Otto
cycle,

e = 1−
(

V2

V1

)γ−1

.
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Problem 4.20 Derive a formula for the efficiency of the Diesel cycle, de-
scribed in Fig. 4.6, in terms of the compression ratio V1/V2 and the cutoff
ratio V3/V2. Show that for a given compression ratio, the Diesel cycle is less
efficient than the Otto cycle. Evaluate the theoretical efficiency of a Diesel
engine with a compression ratio of 18 and a cutoff ratio of 2.

Problem 4.21 The ingenious Stirling engine is a true heat engine that
absorbs heat from an external source. See p. 133–134 for a description of its
workings.

(a) Draw a PV diagram for this idealized Stirling cycle.

(b) Forget about the regenerator for the moment. Then, during step 2, the
gas will give up heat to the cold reservoir instead of to the regenerator;
during step 4 the gas will absorb heat from the hot reservoir. Calculate
the efficiency of the engine in this case, assuming that the gas is ideal.
Express your answer in terms of the temperature ratio Tc/Th and the
compression ratio (the ratio of the maximum and minimum volumes).
Show that the effficiency is less than that of a Carnot engine operating
between the same temperatures. Work out a numerical example.

(c) Now put the regenerator back. Argue that, if it works perfectly, the
efficiency of a Stirling engine is the same as that of a Carnot engine.

(d) Discuss, in some detail, the various advantages and disadvantages of a
Stirling engine, compared to other engines.

Problem 5.5 Consider a fuel cell that uses methane (“nattural gas”) as fuel.
The reaction is

CH4+2O2 −→ 2H2O + CO2.

(a) Use the data at the back of this book to determine the values of ∆H
and ∆G for this reaction, for one mole of methane. assume that the
reaction takes place at room temperature and atmospheric pressure.

(b) Assuming ideal performance, how much electrical work can you get out
of the cell, for each mole of methande fuel?

(c) How much waste heat is produced, for each mole of methane fuel?
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(d) The steps of this reaction are

at − electrode: CH4+2H2O−→ CO2 + 8H+ + 8e−,
at + electrode: 2O2 + 8H+ + 8e− −→ 4H2O.

what is the voltage of the cell?

Problem 5.11 Suppose that a hydrogen fuel cell, as described in the text, is
to be operated at 75◦C and atmospheric pressure. We wish to estimate the
maximum electrical work done by the cell, using only the room-temperature
data at the back of this book. It is convenient to first establish a zero-point
for each off the three substances, H2, O2, and H2O. Let us take G for both
H2 and O2 to be zero at 25◦C, so that G for a mole of H2O is −237 kJ at
25◦C.

(a) Using these conventions, estimate the Gibbs free energy of a mole of
H2 at 75◦C. Repeat for O2, and H2O.

(b) Using the results of part (a), calculte the maximum electrical work
done by the cell at 75◦C, for one mole of hydrogen fuel. Compare to
the ideal performance of the cell at 25◦C.

Problem 5.23a–c By subtracting µN from U , H , F , or G, one can obtain
four new thermodynamic potentials. Of the four, the most useful is the
grand free energy (or grand potential),

Φ ≡ U − TS − µN.

(a) Derive the thermodynamic identity for Φ, and the related formulas for
the partial derivatives of Φ with respect to T , V , and µ.

(b) Prove that, for a system in thermal and diffusive equilibrium (with
a reservoir that can supply both energy and particles), Φ tends to
decrease.

(c) Prove that Φ = −PV .
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Problem 5.35 The Clausius-Clapeyron relation 5.47 is a differential equa-
tion that can, in principle, be solved to find the shape of the entire phase-
boundary curve. To solve it, however, you have to know how both L and ∆V
depend on temperature and pressure. Often, over a reasonably small section
of the curve, you can take L to be constant. Moreover, if one of the phases
is a gas, you can usually neglect the volume of the condensed phase and just
take ∆V to be the volume of the gas, expressed in terms of temperature and
pressure using the ideal gas law. Making all these assumptions, solve the
differential equation explicitly to obtain the folowing formula for the phase
boundary curve:

P = const× e−L/RT .

This result is called the vapor pressure equation. Caution: Be sure to
use this formula only when all the assumptions just listed are valid.

Problem 5.47

Problem 5.48 As can be seen in Fig. 5.20, the critical point is the unique
point on the original van der Waals isotherms (before the Maxwell construc-
tion) where both the first and second derivaties of P with respect to V (at
fixed T ) are zero. Use this fact to show that

Vc = 3Nb, Pc =
1

27

a

b2
, and kBTc =

8

27

a

b
.

Problem 5.51When plotting graphs and performing numerical calculations,
it is convenient to work in terms of reduced variables,

t = T/Tc, p = P/P/cm, v = V/Vc.

Rewrite the van der Waals equation in terms of these variables, and notice
that the constants a and b disappear.
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Problem 1.69 Imagine a narrow pipe, filled with fluid, in which the con-
centration of a certain type of molecule varies only along the length of the
pipe (in the x direction). By considering the flux of these particles from both
directions into a short segment ∆x, derive Fick’s second law,

∂n

∂t
= D

∂2n

∂x2
.

Noting the similarity to the heat equation derived in Problem 1.62, discuss
the implications of this equation in some detail.

Problem 1.70 In analogy with the thermal conductivity, derive an approxi-
mate formula for the diffusion coefficient of an ideal gas in terms of the mean
free path and the average thermal speed. Evaluate your formula numerically
for air at room temperature and atmospheric pressure, and compare to the
experimental value quoted in the text. How doew D depend on T , at fixed
pressure?
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