
Problem 2.24

Part (a)

The height of the peak is when N↑ = N↓ = N/2,

Ωmax =
N !

(N/2)!(N/2)!
.

We will now use the Stirling approximation, lnx! ≈ x lnx − x, which may
also be written

x! ≈
(
x

e

)x

,

but we will also see that this is a situation where we should rather use the
more precise Stirling approximation.

We get

Ω ≈ (N/e)N

[(N/2e)N/2]2
=

(N/e)N

(N/e)N(1/2)N
= 2N

This can however not be correct since 2N is the total number of states for
the two-state paramagnet, and the reason for this is that this simple Stirling
approximation is not very accurate.

Better solution!

The more careful solution instead makes use of

x! ≈
(
x

e

)x√
2πx,

and we then find

Ωmax ≈ (N/e)N
√
2πN

[(N/2e)N/2
√
πN ]2

=
(N/e)N

(N/e)N(1/2)N

√
2πN

πN
=

2N√
πN/2

.
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Part (b)

We have

Ω =
N !

N↑!(N −N↑)!

Take N↑! = N/2 + x, N − N↑ = N/2 − x, and use the simpler Stirling
approximation:

lnΩ ≈ N lnN −N − [(N/2 + x) ln(N/2 + x)− (N/2 + x)]

−[(N/2− x) ln(N/2− x)− (N/2− x)]

= N lnN − (N/2 + x) ln
[
N

2

(
1 +

2x

N

)]
− (N/2− x) ln

[
N

2

(
1− 2x

N

)]
.

We then use ln
[
N
2

(
1 + 2x

N

)]
= ln N

2
+ ln

(
1 + 2x

N

)
and the Taylor expansion

to second order for the second term,

ln(1 + ϵ) ≈ ϵ− 1

2
ϵ2 + . . . ,

which is necessary since we the term linear in x vanishes.

lnΩ ≈ N lnN − (N/2 + x)

[
ln

N

2
+
(
2x

N

)
− 1

2

(
2x

N

)2
]

−(N/2− x)

[
ln

N

2
+
(
−2x

N

)
− 1

2

(
−2x

N

)2
]

= N lnN −N

[
ln

N

2
− 1

2

(
2x

N

)2
]
− x

[
2
(
2x

N

)]

= N ln 2 +
2x2

N
− 4x2

N

= N ln 2− 2x2

N
,

which gives
Ω(x) = 2Ne−2x2/N .

With the better Stirling approximation that instead becomes

Ω(x) = Ωmax exp

(
− x2

2(N/4)

)
.
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Incorrect solution

With only the first term in the Taylor expansion ln(1 + ϵ) ≈ ϵ we arrive at

lnΩ ≈ N lnN − (N/2 + x)
[
ln

N

2
+
(
2x

N

)]
− (N/2− x)

[
ln

N

2
+
(
−2x

N

)]
= N lnN −N

[
ln

N

2

]
− 2x

(
2x

N

)
= N ln 2− 4x2

N
,

which is not correct.

Alternative approach

One can instead use the fact that ln(a + b) + ln(a − b) = ln(a2 − b2). It is
then enough to use the first order Taylor expansion, since the first term in
the expansion gives the x2 term.

lnΩ ≈ N lnN − (N/2 + x) ln(N/2 + x)− (N/2− x) ln(N/2− x)

= N lnN − N

2

[
ln
(
N

2
+ x

)
+ ln

(
N

2
− x

)]
− x

[
ln
(
N

2
+ x

)
− ln

(
N

2
− x

)]
= N lnN − N

2
ln

(
N2

4
− x2

)
− x

[
ln
(
N

2
+ x

)
− ln

(
N

2
− x

)]

= N lnN − N

2
ln

[
N2

4

(
1− 4x2

N2

)]
− x

[
ln
(
N

2
+ x

)
− ln

(
N

2
− x

)]

= N lnN − N

2

[
ln

N2

4
− 4x2

N2

]
− x

[(
ln

N

2
+

2x

N

)
−
(
ln

N

2
− 2x

N

)]

= N lnN − N

2
ln
(
N

2

)2

+
2x2

N
− 4x2

N

= N ln 2− 2x2

N
,

which (again with the better Stirling approximation) gives

Ω(x) = Ωmax exp

(
− x2

2(N/4)

)
.
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Sum of Ω(x)

We expect the sum over all the multiplicities should give

N/2∑
x=−N/2

Ω(x) = 2N .

We then approximate the sum by the integral and make use of∫
e−x2/2/a2 =

√
2πa,

to get

∫
dx Ω(x) = Ωmax

∫
dx e−x2/2/(N/4) = 2N

√
2

Nπ

√
2π

√
N

4
= 2N .

That this comes out exactly correct doesn’t show that the calculations are
exact. We are using approximations in many places, e.g. by approximating
the sum by an integral. The conclusion is rather that the different approxi-
mations have the same origin such that they cancel each other out.

4


