Multiplicity and the second law

We have seen:

Energy tends to rearrange itself such that the multiplicity is at (or very near) its maximum value.

A formulation of the second law of thermodynamics:

Any large system in equilibrium will be found in the macrostate with the greatest multiplicity.

or

Multiplicity tends to increase.

Entropy

Introduce the entropy:

$$S = k_B \ln \Omega$$

- ullet Ω a very large number,
- $\ln \Omega$ a large number,
- $k_B \ln \Omega$ an ordinary number.

The entropy increases with...

- increasing number of particles,
- increasing energy,
- increasing volume,
- breaking apart of larger molecules into smaller.

Additive property of entropy

Additive property: For two parts A and B with $\Omega_{\text{total}} = \Omega_A \Omega_B$:

$$\begin{array}{rcl} S_{\mathrm{total}} & = & k_{B} \ln \Omega_{\mathrm{total}} \\ & = & k_{B} \ln (\Omega_{A} \Omega_{B}) \\ & = & k_{B} \ln \Omega_{A} + k_{B} \ln \Omega_{B} \\ & = & S_{A} + S_{B}. \end{array}$$

Example: Entropy of an Einstein solid

Einstein solid with N oscillators and $q \gg N$ energy units.

$$\Omega = \left(\frac{eq}{N}\right)^N,$$

$$S = k_B \ln \left(\frac{eq}{N}\right)^N = Nk_B \ln \left(\frac{eq}{N}\right).$$

With $N=10^{22}$ and $q=10^{24}$ in $S=k_B \ln \Omega$:

$$S = Nk_B \ln(271.8) = Nk_B \times 5.6$$

= $10^{22} \times 1.38 \cdot 10^{-23} \times 5.6$
= 0.77 J/K.

Entropy and disorder!

Often an helpful analogy:

A shuffled deck of cards is more disordered—higher entropy.

However:

A glass of crushed ice appears more disordered, but actually has a lower entropy than a glass with the same amount of water.

Entropy and the second law

Restate the second law of thermodynamics in terms of the entropy:

Any large system in equilibrium will be found in the macrostate with the greatest entropy.

or

Entropy tends to increase.

Maxwell's demon

Is it really generally true that all processes lead to the increase of entropy?

Maxwell suggested that a "very observant and neat-fingered being" could deflect faster particles in one direction and slower particles in the other.

However,

- devices for doing this have been found to be ineffective since each such a device has to process the information needed to sort the molecules and this creates entropy.
- The entropy will thus increase and the second law is not violated.