Overview, ch 2-5

Chapter 1 introduced heat, work energy, temperature.

what remains...

- microstates and macrostates
 entropy and the second law
- $\mathbf{0} \Rightarrow$ temperature, heat and entropy (and pressure)
- consequences of the second law: heat engines and refrigerators
- consequences of the second law: chemical reactions

Remaining questions to answer:

- What is temperature really?
- Why does heat flow from hotter to colder objects?
- Why do many processes happen in one direction only, but not in the referse?
 "irreversible"

Short answer:

Irreversible processes are very very probable but not inevitable.

If energy moves around "randomly" the chances that it will be distributed more uniformely are more than huge.

Plan

Examine how systems store energy and count the number of ways it can be arranged — conbinatorics.

2.1 Two state systems:

- Small systems (flip three coins)
- Big systems, $N \sim 100$ coins
- 2.2 Model of a solid
 - Three oscillators
 - N oscillators
- 2.3 Interacting systems
 - Small
 - ▶ Big, $N \sim 100$
- 2.4 Huge systems, $N\sim 10^{20}$
- 2.5 The ideal gas
- 2.6 Entropy

э